
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2008

Beyond the arithmetic constraint: depth-optimal
mapping of logic chains in reconfigurable fabrics
Michael Todd Frederick
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Computer Sciences Commons, and the Electrical and Electronics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Frederick, Michael Todd, "Beyond the arithmetic constraint: depth-optimal mapping of logic chains in reconfigurable fabrics" (2008).
Retrospective Theses and Dissertations. 15771.
https://lib.dr.iastate.edu/rtd/15771

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15771&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15771&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15771&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F15771&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F15771&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15771&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Frtd%2F15771&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F15771&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/15771?utm_source=lib.dr.iastate.edu%2Frtd%2F15771&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Beyond the arithmetic constraint:

depth-optimal mapping of logic chains in reconfigurable fabrics

by

Michael Todd Frederick

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Engineering

Program of Study Committee:
Arun K. Somani, Major Professor

Srinivas Aluru
Diane Rover

Akhilesh Tyagi
Stephen B. Vardeman

Iowa State University

Ames, Iowa

2008

Copyright c© Michael Todd Frederick, 2008. All rights reserved.

www.manaraa.com

 2009

www.manaraa.com

ii

To my parents for teaching me how to be a better man,

and to my brother for being a better man,

and to my Melissa for making me want to be a better man...

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . viii

CHAPTER 1. INTRODUCTION . 1

1.1 Motivation . 3

1.2 Hypothesis . 7

1.3 Approach and Contributions . 7

CHAPTER 2. REVIEW OF LITERATURE 10

2.1 FPGA Architecture . 10

2.1.1 Commercially Available Architectures 15

2.1.2 Carry Chains and Dedicated Routing between LEs 16

2.2 FPGA Design Flow . 21

2.2.1 Behavioral specification and Multi-level Synthesis 21

2.2.2 Technology Mapping . 24

2.2.3 Logic Clustering . 32

2.2.4 Place and Route . 37

CHAPTER 3. ENABLING THE ARCHITECTURE 44

3.1 Carry Chain Reuse Logic Element . 44

3.2 Summary . 52

CHAPTER 4. CASE STUDY: POST-TECHNOLOGY MAP HEURISTICS 53

4.1 Post-Technology Map Experiments . 54

4.2 Summary . 63

www.manaraa.com

iv

CHAPTER 5. OPTIMAL LOGIC CHAIN TECHNOLOGY MAPPING . . 64

5.1 Problem Formulation and Definitions . 65

5.2 ChainMap Labeling . 68

5.3 ChainMap Mapping . 74

5.4 ChainMap Duplication . 77

5.5 ChainMap Relaxation . 81

5.5.1 Shallowest Logic Branch Trimming . 81

5.5.2 Least Critical Branch Trimming . 82

5.5.3 Global Least Critical Relaxation . 84

5.6 Post-Technology Map Results . 86

5.7 Summary . 91

CHAPTER 6. POST-TECHNOLOGY MAP CHAIN HANDLING 94

6.1 ChainPack: Chains for Area Reduction . 94

6.2 Hierarchical Clustering with HierARC . 97

6.3 Summary . 107

CHAPTER 7. CHAINMAP FULL DESIGN FLOW EXPERIMENTS . . . 109

7.1 Testing Methodology and Architecture Description 110

7.2 Tool Development . 112

7.3 Fixed Architecture Performance Assessment . 121

7.4 Scaled Architecture Performance Assessment 126

7.5 Summary . 132

CHAPTER 8. DISCUSSION, CONTRIBUTIONS, AND CONCLUSION . 135

8.1 Discussion . 135

8.2 Contributions . 140

8.3 Future Work . 142

8.4 Conclusion . 145

APPENDIX

Architectural Description . 147

www.manaraa.com

v

BIBLIOGRAPHY . 149

www.manaraa.com

vi

LIST OF TABLES

Table 1.1 K = 5 Design Characteristics . 4

Table 2.1 Commercial FPGA estimated component delays in picoseconds. 12

Table 3.1 Layout Summary . 51

Table 4.1 Reuse Summary . 58

Table 5.1 Performance Summary for OpenCores Benchmarks, K=4 91

Table 5.2 Performance Summary for OpenCores Benchmarks, K=5 91

Table 5.3 Performance Summary for OpenCores Benchmarks, K=6 92

Table 6.1 Sample ChainPack results for full-width, before, global least critical

relaxation, K = 5. 97

Table 6.2 MCNC Clustering, K = 4, N = 8, I = 18 101

Table 6.3 Approximate Comparison to Published Results 102

Table 6.4 OpenCores Clustering, K = 4, N = 8, I = 18 107

Table 7.1 Routing complexity for OpenCores Benchmarks, K = 6, critical 123

Table 7.2 Chain utilization for OpenCores Benchmarks, K = 6, critical 124

Table 7.3 Cluster pin utilization, K = 6, critical 125

Table 7.4 Cluster array dimensions, K = 6, critical 128

Table 8.1 Technology map complexity, K = 6, critical 138

Table 8.2 Area Paradox for OpenCores Benchmarks, K = 5, critical 138

Table A.3 VPR Routing Architectural Parameters 148

www.manaraa.com

vii

Table A.4 VPR LE Architectural Parameters . 148

Table A.5 VPR Component Parameters . 148

www.manaraa.com

viii

LIST OF FIGURES

Figure 1.1 Reuse concept, 4 cascaded LEs connected trough (a) general routing

nets, and (b) chain nets. 2

Figure 1.2 Histogram of aggregated netlist fanout for 20 MCNC benchmarks. . . 4

Figure 1.3 Carry chain network with 4 LEs, 8 LUTs contained within a 11 LUT

logic network. 5

Figure 1.4 Arithmetic bias in chain allocation. 6

Figure 2.1 A conceptual logic element (LE). 11

Figure 2.2 An island-style FPGA. 13

Figure 2.3 Carry computations (a) carry-propagate, (b) carry-select. 17

Figure 2.4 Advanced carry chains. 18

Figure 2.5 A carry-chain induced partition. 22

Figure 2.6 Typical routing channel (a), and (b) its corresponding routing resource

graph. 39

Figure 2.7 Timing graph (a) circuit, and (b) its timing graph realization. 39

Figure 2.8 Source and destination swap regions using relative chain position. . . . 43

Figure 3.1 (a) (K-1)-LUT mode, (b) K-LUT mode 44

Figure 3.2 (a) (K-1) carry-select chain, (b) {K − 1,K} heterogeneous logic chain 45

Figure 3.3 Traditional carry-select architecture. 46

Figure 3.4 Chain reuse carry-select architecture. 48

Figure 3.5 Implementation of the mode multiplexer. 49

www.manaraa.com

ix

Figure 3.6 Mask modes: (a) traditional arithmetic, (b) normal, and (c) reuse arith-

metic, and (d) reuse normal. 50

Figure 3.7 Mask truth tables for the reuse and normal LEs. 51

Figure 4.1 DFS tree from output to input. 58

Figure 4.2 Speed-up of Reuse over Unmodified Flow vs. Algorithm 60

Figure 4.3 Average Ratio of Reuse to Unmodified Utilization vs. Interconnect

Resource . 61

Figure 4.4 Ratio of Reuse Utilization to Unmodified Utilization vs. Algorithm . . 62

Figure 5.1 Transformation from Boolean network Nt to DAGs N ′t and N ′′t for chain

cut. 68

Figure 5.2 Conceptual network cuts. 71

Figure 5.3 2-bit full adder for K = 3 . 78

Figure 5.4 Chain tree (a) before, (b) worst case duplication, (c) average case with

relaxation. 80

Figure 5.5 Experimental Design Flows . 87

Figure 5.6 Full-width speedup of ChainMap flows relative to normal flow vs. av-

erage routing to LUT delay ratio. 89

Figure 5.7 Sub-width speedup of ChainMap flows relative to normal flow vs. av-

erage routing to LUT delay ratio. 89

Figure 6.1 ChainPack example with 13 LUTs, (a) initial ChainMap solution with

13 LEs and, (b) after ChainPack with 9 LEs. 96

Figure 6.2 Clustering a chain for L = 10, N = 4. 105

Figure 6.3 Tie breaking a chain for L = 10, N = 4. 106

Figure 7.1 Experimental Design Flows . 111

Figure 7.2 Stratix cell primitive. 114

Figure 7.3 (a) Stratix primitive, (b) SIS arithmetic LE, (c) SIS combinational LE 114

www.manaraa.com

x

Figure 7.4 SIS arithmetic chain with black box module partitioning and BLIF

representation. 116

Figure 7.5 Alterations to the VPR routing resource graph. 118

Figure 7.6 Alterations to the VPR timing graph. 120

Figure 7.7 Speedup, N = 8 . 121

Figure 7.8 Channel width, N = 8 . 122

Figure 7.9 Total routed wire length, N = 8 . 123

Figure 7.10 Pwire−delay, N = 8 . 126

Figure 7.11 Post-routing implementations for before global least critical relaxation

and normal, K = 6. 127

Figure 7.12 Speedup, N = 8 . 128

Figure 7.13 Channel width, N = 8 . 130

Figure 7.14 Total routed wire length, N = 8 . 130

Figure 7.15 Pwire−delay, N = 8 . 131

Figure 7.16 Parea−delay, N = 8 . 131

Figure 8.1 Area paradox for xtea, (a) normal with 17 LUTs, 9 LEs and, (b) Chain-

Map with 13 LUTs, 13 LEs. 139

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

As computing systems have evolved, a myriad of applications and their specific require-

ments have driven the specialization of architectures. Processors dominate the general purpose

computing realm because of their ability to flexibly implement a wide range of applications

with different execution styles, but to do so they must sacrifice performance and efficiency.

On the other end of the spectrum, application specific integrated circuits (ASICs) perform

highly-repetitive tasks with extreme efficiency and performance, but are so specialized that

they can rarely be called upon to do anything else. As the societal pervasiveness of computing

has increased, the need for architectures that can blend the advantages of general purpose

processors (GPPs) with ASICs has grown. Field Programmable Gate Arrays (FPGAs) have

emerged as a technology capable of bridging the gap between efficiency and flexibility.

SRAM look-up table (LUT) based FPGAs are designed to flexibly implement a wide range

of applications in programmable hardware. They have traditionally been relegated to the realm

of prototyping because they lacked the performance necessary to be critical pieces of a produc-

tion design. ASICs yield designs which are faster, occupy less area, and consume less power

than their reconfigurable counterparts, in most cases by many factors of a given performance

metric [77][48]. However, advances in codesign, process technology, and innovative architec-

tures have narrowed the performance gap between FPGAs and ASICs to the point where their

flexibility and relatively low cost have made them justifiable design choices. Modern FPGAs

have embedded dedicated components such as multipliers, RAM modules, and microcontrollers

alongside reconfigurable logic in an effort to provide the specialized resources to achieve the

necessary performance. One important dedicated structure present in nearly all commercially

available architectures is the arithmetic carry chain.

www.manaraa.com

2

Figure 1.1 Reuse concept, 4 cascaded LEs connected trough (a) general
routing nets, and (b) chain nets.

The programmable interconnection array is responsible for connecting logic elements (LEs)

within a reconfigurable fabric, tying the output of one LE to the input of another. LEs serve

as the basic unit of computation, typically containing a memory structure (flip-flop), look-up

table (LUT), and carry chain logic. Simple interconnection arrays are pretty straightforward,

connecting any source to any sink using programmable general routing wires. To take advan-

tage of locality, hierarchal routing structures give clusters of LEs the ability to first connect

amongst themselves through local routing, and if necessary, connect to LEs outside the cluster

through general routing. Regardless of the LE architecture or number of dedicated components

of a reconfigurable fabric, the interconnection array is the fabric’s greatest strength, but also

the limiting factor on performance.

As the need for FPGAs to perform faster and more efficiently has grown, carry chains have

been added to accelerate arithmetic computation. Arithmetic operations are characterized

by the direct dependence of the computation of cell i on the output of cell i − 1. Carry

chains are an indispensable part of reconfigurable fabrics, as they enable arithmetic functions

to be implemented in an efficient manner by avoiding the use of the slower, more flexible

general routing array. However, limiting the use of the carry chain to arithmetic operations

underutilizes a potentially powerful resource.

Figure 1.1(a) shows how a combinational path spanning through three levels of performance-

costly general routing can be converted to use the highly-optimized carry chain instead, Fig-

ure 1.1(b). The Xilinx ISE tool set estimates, for its entire Virtex Family of FPGAs, the

www.manaraa.com

3

routing delay encountered when using general routing to typically be about 300-1500 ps and a

carry chain net to contribute 0 ps wire delay to a circuit [74]. Clearly, the carry chain is a highly

efficient interconnection structure which could potentially benefit a variety of applications, if

it is allowed to by the architecture and the computer aided design (CAD) tool flow.

1.1 Motivation

The goal of reusing the carry chain for non-arithmetic operations is to map single fanout

nets to a logic chain instead of programmable routing, but only when it benefits the circuit.

Such a strategy must be applicable to a large enough number of nets in an optimized netlist

to make a significant impact, as per Amdahl’s law. To justify potential resource expenditures,

the first step is to see how many such nets exist designs. Figure 1.2 depicts a histogram of the

fanout degree of nets for the aggregated MCNC [76] benchmark suite. It shows that 80% of

nets fanout to only one or two other LUTs. This means that the vast majority of nets connect

one LE source to one LE sink in an exclusive relationship. Clearly, this indicates that there is

a broad potential impact for carry chain reuse.

There are opportunities to use carry chains in all designs, especially for those that have

few carry chains to begin with. Many designs are typically sparsely arithmetic in nature.

Table 1.1 shows the design characteristics of a sampling of designs available at OpenCores[62].

As evidenced by the low percentage of arithmetic cells in most designs, the maximum being

cfft at slightly over 50% penetrance, there are many designs that drastically underutilize the

carry chain and could benefit from reuse. Many designs simply lack hardware description

language (HDL) designated arithmetic carry chains.

Design depth is created by the l logic and g programmable general routing connections

along paths from primary inputs (PIs) to any node in a network. In Figure 1.3, the PIs have

a routing depth g = 0, and for each LUT in the chain input logic network g = 1, l = 1. The

first member of the ripple-carry chain has logic depth of l = 2, while the last has l = 5. Each

LUT in the chain network possesses a routing depth of g = 2, because the path to any LUT in

the chain traverses 2 routing connections and increases only logic depth. Each chain node is a

www.manaraa.com

4

Figure 1.2 Histogram of aggregated netlist fanout for 20 MCNC bench-
marks.

Table 1.1 K = 5 Design Characteristics

Design LEs Arith. LEs Nets Ave. LE Fanout % Arith.
cfft 3360 1753 6758 6.23 52.17
xtea 731 299 1494 6.00 40.90
rsa 945 268 1556 6.17 28.36

sha512 4394 1164 6765 7.23 26.49
jpeg 7015 1715 13976 6.28 24.45
dct 6140 1414 12565 5.82 23.03

ethernet 287 34 363 5.62 11.85
md5 2838 262 3467 5.65 9.23
usb 3141 283 3703 5.91 9.01
ava 12743 1094 14410 5.88 8.59

des3 area 908 10 1268 5.42 1.10
reed sol 1228 10 1251 6.53 0.81

twofish256 2602 0 2858 5.62 0.00
aes128 fast 12122 0 12255 5.33 0.00

Total 58454 8306 82689 5.92 14.21

www.manaraa.com

5

Figure 1.3 Carry chain network with 4 LEs, 8 LUTs contained within a 11
LUT logic network.

depth increasing node, one that increases logic depth without increasing routing depth. Carry

chains provide near-zero delay transmission of a carry, but are invoked only through HDL

macros. For designs that contain few arithmetic operations and are implemented in a carry-

select style architecture, the carry chain is an idle resource. Generic logic chains encompass

both arithmetic and non-arithmetic chains and view the carry chain as an equal opportunity

resource.

Generic logic chains address two common pitfalls of HDL-based arithmetic chains. First,

arithmetic bias can cause some nets to be incorrectly assigned, actually increasing the critical

path of the design. Figure 1.4(a) shows an example of an incorrectly assigned carry chain. For

this example, assume that an LUT has delay of 250ps and that a general routing connection,

conservatively, costs twice that at 500ps. Additionally, all PIs and POs are connected to the

network through general routing connections. The critical path in this example is the path

from function f(a0, b0, c0) through five general routing connections and four LUTs, delay =

5 · g + 4 · l ≈ 3.5ns. However, if the carry chain is remapped to the actual critical path

in Figure 1.4(b), i.e. that which traverses the most general routing connections, delay =

4 · g + 3 · l ≈ 2.75ns. Note that Figure 1.4(b) reports the logic depth of the critical path, not

www.manaraa.com

6

Figure 1.4 Arithmetic bias in chain allocation.

the network logic depth of l = 4. Assuming carry chains have c = 0ps delay, the chain path

has delay = 3 · g + 4 · l + 2 · c ≈ 2.5ns.

Likewise, arithmetic bias can lead to chains that are too aggressive. Figure 1.4(c) depicts

an LE with routing depth of g = 3, despite making use of its chain input. In this case, it is of

no advantage to restrict the output of m(a1, b1, c1) to using the chain net because the critical

path is unaffected. Instead, the network can be implemented as in Figure 1.4(d), where both

m′(a1, b1, c1) and f ′(a0, b0, c0) drive general routing nets which are sunk at k′(a2, f
′,m′). This

change results in equal routing depth critical paths that afford the place and route (PNR) and

clustering tools more flexibility.

The critical path can be affected negatively by bias toward arithmetic operations. This is

exacerbated by the preservation of arithmetic chains through synthesis and technology map-

ping. In current design tools, arithmetic functions are detected at the HDL level and granted

immunity throughout the entire design flow. This partitions the design into arithmetic chains

and regions of support logic, as pictured in Figure 1.3. These partitions are protected from

synthesis modification, inclusion in LUTs with other nodes, and subject to the requirement

that the chain be clustered, placed, and routed in one contiguous chain, regardless of its actual

www.manaraa.com

7

affect on design routing depth. Allowing the design flow to choose which chains are necessary

can yield better circuits.

Arithmetic and non-arithmetic chains both impact the performance of a design. Therefore,

it is only fair that all arithmetic and general routing nets be given fair access to the high

performance carry chain. Generic logic chains encompass both computation styles, and their

formation at the technology mapping stage can alleviate the bias HDL macros create in a

design. Through novel architectures, relaxation techniques, and innovative clustering solutions

generic logic chains can be successfully created and utilized without HDL arithmetic macros.

1.2 Hypothesis

Given an arbitrary Boolean network and a capable architecture, generic logic chains can be

created during technology mapping in polynomial time, without the preservation of high-level

hardware description language macros. Each Boolean node in the mapped solution possesses

optimal routing depth and, within its confines, optimal logic depth.

1.3 Approach and Contributions

A review of reconfigurable architectures and design flow techniques presented in Chapter 2

will show that, beyond using HDL macros and device primitives, there seems to be no pub-

lished solution to the problem of mapping chains in reconfigurable architectures. Furthermore,

architectures that support generic logic chains either use the existing carry chain at a sub-width

capacity or require extra or specialized interconnection to achieve full-width chains.

Viewing the carry chain as an exploitable resource and successfully exploiting it are vastly

different propositions. There are two main obstacles to successfully reusing the carry chain in

reconfigurable fabrics: 1) the architecture should allow the entire K-LUT (full-width) output

to traverse the carry chain and 2) the tools must be able to identify and form generic logic

chains that encompass both arithmetic and non-arithmetic operations. Facilitating logic chain

formation in the architecture must not degrade the performance of the arithmetic (sub-width)

operations nor the performance of the traditional combinational output, and have minimal cell

www.manaraa.com

8

area impact. Likewise, identifying generic chains with CAD tools must preserve the perfor-

mance of HDL solutions.

Chapter 3 presents an architecture that allows the complete K-LUT function to drive

the carry chain. The major drawback of traditional carry-select architectures, which directly

facilitate sub-width (K−1)-LUT generic logic chains, is just that–they only support sub-width

chains. Alternately, the full-width K-LUT chains that are available in commercial FPGA

architectures require a connection between logic elements that is separate from the existing

carry chain. Here, a novel architecture is presented that provides the capacity for full-width

chains trough reuse of the existing carry chain with minimal extraneous logic.

The typical FPGA design flow consists of synthesis, technology mapping, clustering, place-

ment, and routing. Tool support for logic chains is addressed through the augmenting the

technology mapping stage. The first step in developing a chain-capable tool flow is the cre-

ation of a suite of heuristic algorithms operating on a post-technology mapped design, created

as a simple addition to a commercial design flow and presented in Chapter 4. These ap-

proaches are used as a case study in chain reuse, in an effort to establish its viability and guide

the development of an optimal technology mapping solution for chains.

The heuristics of Chapter 4 will show that technology mapping is the ideal step at which

to create logic chains. Technology mapping serves as the interface between an architecture

non-specific Boolean network and a solution which is utilizes specific computing and routing

resources. Chapter 5 presents a novel technology mapping algorithm, called ChainMap, that

creates an optimal routing depth solution to an arbitrary Boolean network. ChainMap is

inspired by the optimal logic depth FlowMap algorithm [20], but instead of defining depth as the

number of logic levels of a network, depth is defined as the number of traversals of the general

routing array. Logic chains are generalized to include both arithmetic and non-arithmetic

operations. A logic chain is defined as a series of depth increasing nodes, i.e. those nodes

which increase the logic depth of the design, while maintaining its routing depth. ChainMap

identifies the optimal routing depth solution of a network in polynomial time, and in doing

www.manaraa.com

9

so, establishes optimal logic chains. Chapter 5 also presents heuristic strategies for relaxing

chains that are not part of the critical path established by the optimal solution.

Chapter 6 presents methods for dealing with chains post-technology mapping. This includes

novel technology map reduction and clustering techniques. While ChainMap harnesses chains

for purposes of improving execution speed along the critical path, chains can also be used

to reduce design area. While a chain is a single fanout connection between LEs, it is also

potentially a dual fanout connection between a source LUT and two sink (K − 1)-LUTs.

ChainPack is presented as method for creating chains when they result in a reduction in the

number of LEs in a design. Another contribution of Chapter 6 is HierARC, a new hierarchical

clustering tool for FPGAs, adapted from bioinformatic microarray analysis.

The post place and route performance of all architectural and design flow contributions

are assessed in Chapter 7 relative to traditional metrics such as circuit delay, area, and routing

utilization. Designs available from OpenCores [62] are used because they contain the HDL

macro chains necessary to measure the full impact of ChainMap. Chapter 8 concludes with a

discussion of results, contributions, and directions for further study.

www.manaraa.com

10

CHAPTER 2. REVIEW OF LITERATURE

2.1 FPGA Architecture

In beginning a discussion of reconfigurable fabrics and SRAM-based FPGAs, it is necessary

to describe their architecture. Reconfigurable fabrics, though typified by the FPGA, come in a

variety of shapes, styles, and granularities. A survey of academically proposed architectures is

presented in [7], as well as a nomenclature for describing the spectrum of available technologies.

The fabric can be characterized by three layers: interconnection, configuration, and processing.

The interconnection layer refers to the general routing array that connects logic elements to one

another. A typical FPGA routing architecture uses about 70-90% of the total transistors on the

die [27]. The configuration layer refers to the memory structures that dictate the functionality

of the programmable routing, look up tables, and any other component in the array that

can operate in different modes. The processing layer consists of the actual structures that

compute a value in the array. Most fabrics subscribe to the 90/9/1 model, meaning that 90%

of the fabric’s area is devoted to interconnection, 9% to configuration bits, and 1% to actual

processing elements. The performance of modern reconfigurable fabrics, in terms of execution

speed, area, utilization, and power consumption, is dominated by the interconnection.

Logic elements (LEs) are typically designed to implement any K-input, one output Boolean

operation or (K − 1)-input, two output arithmetic operation. The standard computation

element is the SRAM look-up table, Figure 2.1(1) is, for all intents and purposes, a K-input

multiplexer whose data inputs are populated by static random access memory (SRAM) cells,

and whose selection inputs are the operation inputs. In this way, for K = 3 all 223
= 28

3-input, 1-output functions can be implemented. Each LE typically contains carry logic to

support arithmetic chains, marked (2), and a D-Flip Flop (DFF), denoted by (3), for sequential

www.manaraa.com

11

Figure 2.1 A conceptual logic element (LE).

logic. SRAM cells are the most common configuration tool, though flash and anti-fuse are also

among the commercially available technologies [1][2].

The most effective LUT width for reconfigurable fabrics has traditionally been viewed as

the 4-LUT. There are a few studies assessing the area/speed trade-off for LUT size in an FPGA,

such as [68] which finds that 5 or 6 input LUTs are better from a execution speed perspective,

and [63] which finds that 3 or 4 input LUTs are better for area efficiency. More recently, the

Stratix II/III adaptive logic module (ALM) [43] has contended that a fracturable LUT offers

the best potential performance. The fracturable LUT is radically different from standard

FPGA cell design, and supports multiple LUT widths including dual 6-LUTs with 4 shared

inputs, dual 5-LUTs with 2 shared inputs, dual independent 4-LUTs, and a single 7-LUT with

a subset of all operations. The Xilinx 5 FPGAs [74] also feature 6-LUTs, indicating that, in

general, FPGAs are moving toward incorporating more logic in every computing resource.

The move to wider LUTs is partially attributable to the desire to increase performance by

decreasing the number of traversals through general routing for all designs. Another reason for

wider LUT widths is that shrinking technology sizes have caused the size of an LUT to shrink,

so that more complex LUT structures can fit in the same space that a legacy 4-LUT previously

occupied. However, this size changing does not extend to the general routing array because

smaller wires lead to increased resistance and delay. Simply, interconnection does not scale as

well as logic [64]. This result is bore out in Table 2.1, where LUT delay shrinks with process

www.manaraa.com

12

Table 2.1 Commercial FPGA estimated component delays in picoseconds.

Routing (ps) Logic (ps)
FPGA K General Chain ChainK-LUT Process

Xilinx Virtex 2 Pro 4 [300,1500] 0 39 250 1.5V, 0.13 µm
Xilinx Virtex 4 4 [300,1400] 0 34 147 1.2V, 90 nm
Xilinx Virtex 5 6 [245,1200] 0 20 80 1.0V, 65 nm
Altera Stratix 4 [300,1500] 0 58 366 1.5V, 0.13 µm

Altera Stratix II 6 [300,1300] 0 35 366 1.2V, 90 nm

technology, but typical routing delay remains relatively unchanged. If the area of the routing

array remains reasonably static and the processing layer shrinks, the inclination is to give the

processing layer more functionality by substituting a fracturable LUT for a two 4-LUTs in the

same physical area [43]. However, the additional complexity of LEs also necessitates wider

interfaces to routing, with every input to a LE requiring 30 or more support routing wires [43].

As vendors increase K, they often increase the complexity of the routing array as well.

Figure 2.2 shows how LEs (1) are arranged in a programmable interconnection array such

that groups of LEs, called clusters, are formed to share resources. Altera refers to clusters

as logic array blocks (LABs), while Xilinx refers to them as configurable logic blocks (CLBs).

The LEs in each cluster share local interconnect (2), access to the general routing array (3),

common control signals, and a carry chain. Programmable routing consists of two types of

interconnection structures, local and general routing. Local routing allows an LE to connect

to any other LE in the same cluster, while general routing connects clusters.

In the limited example provided by Figure 2.2, row channels intersect columns every 4

clusters, however, in practice general routing arrays are far more densely packed with wires of

varying length, typically 1, 2, 4, 8, 16, and 24 clusters, with switches allocated liberally. The

interconnection array is flush with resources, containing adjacent LE connection structures

providing low-latency connectivity and long-distance wires allowing any LE to connect to any

other LE. All this connectivity comes at the expense of increased chip area or domination of

www.manaraa.com

13

Figure 2.2 An island-style FPGA.

the area that is available. Channels consist of individual tracks, each containing the basic

segment configuration of wires of varying length.

Clusters are first introduced in [50], to improve performance and density in FPGAs stran-

gled by the amount of connectivity necessary to form large arrays of independent LEs. Each

cluster is connected through their local routing to the row (4) and column (5) signal channels

using connection boxes. Specific row and column channel intersection points contain config-

urable switches (S-boxes) (6) that enable each LE to access any other LE in the array. Row

and column channels intersect at the switch boxes at regular intervals.

FPGAs are commonly classified as either island-style or hierarchical. Each possesses clus-

ters that are surrounded on each side by general routing, allowing them access to all other

clusters, as in Figure 2.2. However, a hierarchical FPGA views each cluster as a mini-FPGA

containing LEs, I/O pads, and other components that connect to each other via local rout-

ing [3]. The distinction is that each cluster in a hierarchical FPGA is treated as a small,

self-contained reconfigurable module, while island-style clusters consist only of LEs.

The size of the cluster has evolved over time and varies greatly depending on the size of the

LE and functionality required within the cluster. When choosing a cluster size there are two

www.manaraa.com

14

considerations, the number of LEs in the cluster, N , and the number of inputs from general

routing, I. Within a cluster, the LEs are typically fully connected, i.e. the output of any

LE can be mapped to the input of any LE in the same cluster. However, not all inputs to

each LE are are accessible from general routing. One result, found in [11], is that for K = 4

and clusters of N ≤ 16 LEs, I = 2 ·N + 2 is a sufficient number of general routing inputs to

maintain 98% cluster utilization. Additionally, because the functionality of cluster I/O renders

each LE functionally equivalent from the point of view of the general routing array, the size of

the routing array can be significantly decreased.

Clusters of size 1 ≤ N ≤ 8 LEs are area efficient from the standpoint of the number

of transistors needed to support LEs with local routing. This is largely dependent on the

quadratic growth of the number of cluster input multiplexers necessary to provide cluster

connectivity with the I = 2 · N + 2 general routing interface for K = 4 [11]. More recent

work in [4], accounting for a modern process technology size of 0.18µm, and using a full timing

model, finds I = K
2 · (N + 1) for LUTs of 5 ≤ K ≤ 6, while reiterating that cluster sizes

3 ≤ N ≤ 10 yield 98% cluster utilization.

As FPGAs have evolved, the demands on their performance and capabilities has rapidly

increased. Historically, FPGAs have been used almost exclusively for design prototyping. How-

ever, due to their flexibility and relative low cost, they have recently become a viable inclusion

in production designs. Manufacturers have tried to recoup performance in FPGAs through the

inclusion of common dedicated components such as carry chains, block RAM, dedicated mul-

tipliers, much more complex and specialized components like high-speed serializer/deserializer

(SERDES) communication cores, and even embedded microcontrollers. Each of these special-

ized and dedicated components increases design performance by intertwining commonly used

computational elements with the reconfigurable logic. While these components enable designs

to perform better, they are mainly positioned to help DSP applications.

Throughout this work, the reconfigurable fabrics under consideration are primarily SRAM-

based LUT architectures, specifically, but not limited to, FPGAs. The terms reconfigurable

fabric, programmable logic, and FPGA will be used interchangeably. Netlist and Boolean

www.manaraa.com

15

network refer to a combinational circuit implemented in a reconfigurable fabric. Each recon-

figurable fabric is assumed to use a island-style routing structure consisting of inter-cluster

general routing and intra-cluster local routing, known collectively as programmable routing.

LEs are assumed to be a variation of Figure 2.1, at minimum containing an SRAM-based LUT,

carry chain logic, and DFF, but also potentially having more complex internal support logic.

2.1.1 Commercially Available Architectures

The Altera Stratix [6] is a 4-LUT architecture, whose routing structure is typical of island-

style FPGAs. Each logic array block (LAB), e.g. cluster, is a set of 10 LEs featuring 30 general

local routing interconnect lines which service intra-cluster routing between LEs and provide

for signals to be sourced/sank to/from the general routing array. Every LE is connected to

the downstream LE on the carry, register cascade, and LUT chains. The general routing array

provides connectivity between clusters in column spans of 1, 4, 8, and 16 clusters, and row

spans of 1, 4, 8, and 24 clusters. The Stratix carry chain is the carry select style (Figure 2.3(b)),

augmented to form a 2-level chain. The carry-select scheme in Stratix directly facilitates chain

reuse for (K − 1)-input functions.

The Stratix II/III ALM [43] is considerably different from other basic LEs. As has been

previously discussed, the ALM contains a fracturable LUT capable of operating with multiple

LUT widths up to dual 6-LUTs with 4 shared inputs, dual 5-LUTs with 2 shared inputs, dual

independent 4-LUTs, and a single 7-LUT with a subset of all operations. In addition, each half

of an ALM contains a dedicated full-adder, enabling parallel ripple carry chains for 3-operand

arithmetic. The Stratix II/III carry chain is incorporated directly into the full adder, and is

accompanied by a shared arithmetic signal that facilitates 2-level ripple carry addition. Both

the shared arithmetic signal and the carry-in are fed directly to the full adder and thus do not

use carry-select arithmetic.

The Stratix II [6] interconnection array is structured similarly to the Stratix. However,

due to its inclusion of a vastly different basic logic element, fewer routing options have been

provided. Each LAB is a set of 8 ALMs (de facto 16 LEs) featuring 44 local routing inter-

www.manaraa.com

16

connect lines which service intra-cluster routing between ALMs and provide for signals to be

sourced/sank to/from the general routing array. Every ALM is connected to the downstream

ALM on the carry, register cascade, and shared function chains. The general routing array

provides connectivity between LABs in column spans of 4 and 16 LABs, and row spans of 1,

16, and 24 LABs. The Stratix III general routing array uses columns spanning 4 and 12 LABs,

and rows spanning 1, 4, and 20 LABs.

The Xilinx Virtex II Pro and Virtex 4 [74] are the same basic architectures, maintaining

the 4-LUT as the standard computation elements. Slices contain two LEs and a configurable

logic block (CLB), e.g. cluster, contains 4 slices (8 LEs). The Virtex 5, while using a 6-LUT,

still maintains the same basic structure of 4 slices per CLB. Published descriptions of the

V4 and V5 routing structures are vague, but appear to use a diagonal routing scheme. In

all Virtex series architectures, the carry chain used is carry-propagate (Figure 2.3(a)). The

carry-propagate scheme used by Xilinx is not directly compliant with chain reuse.

2.1.2 Carry Chains and Dedicated Routing between LEs

One extremely common dedicated structure found in nearly all modern programmable

logic devices is the arithmetic carry chain. Each adjacent LE in a cluster is connected to its

predecessor and its descendant through an exclusive connection. The carry chain is a very

specific, highly optimized routing structure in that it employs specialized logic and is designed

to provide near 0ps latency interconnect between a carry source and its adjacent sink.

There are two primary methods for implementing carry logic in reconfigurable fabrics:

propagate/generate and carry-select. Figure 2.3(a) shows the propagate/generate method

where the propagate function serves as the selection input to a multiplexer, choosing between

the carry-in and the generate. Xilinx Virtex family FPGAs implement this style of carry

computation which fits the equation ci = p · ci−1 + p · g, where the propagate condition p is the

result of the LUT computation (an XOR gate), ci−1 is the carry computed by cell i− 1 or the

chain initialization, and the generate condition g tracks input b.

The Altera Stratix uses the carry-select method, as shown in Figure 2.3(b). This method

www.manaraa.com

17

Figure 2.3 Carry computations (a) carry-propagate, (b) carry-select.

uses an LUT with one input (ci−1) serving as the carry into the current LE and selects between

the result of the arithmetic function computed when the carry is 0, (f0), and when the carry

is 1, (f1), thus fitting the equation ci = ci−1 · f1 + ci−1 · f0. Likewise, the Stratix II/III ALM

uses a dedicated full adder circuit in lieu of a configurable carry chain.

Commercial architectures most commonly employ a ripple carry chain because of its linear

delay/area model. Its uniform architecture is a natural fit for FPGAs as each cell can be located

at anywhere in the chain. More complex, higher-performance strategies such as the Brent-Kung

carry-lookahead, block carry [41], and carry-skip [37] have been proposed as alternate solutions.

While the carry-lookahead and block carry chains offer much higher performance in the form of

non-linear speed degradation as the number of cells in the chain increases, their area increases

exponentially. The simple carry-skip chain is a natural fit for reconfigurable fabrics because,

although it possesses a linear delay model, it also has the advantage of a linear area model and

is easily partitioned at each cell in the chain and on cluster transitions. Ripple carry, carry-skip,

2-level carry select, and 2-level Brent-Kung carry chains are shown in Figure 2.4. The logic

and interconnection complexity of the ripple and skip chains are contrasted with those of the

Brent-Kung and 2-level carry select. While the more complex chains may preform arithmetic

operations much faster for chains of greater than 16 cells, they loose flexibility because a cell’s

www.manaraa.com

18

Figure 2.4 Advanced carry chains.

position in a chain is a more important factor throughout the technology mapping, clustering,

placement, and routing phases of the design flow.

Special DSP-centric reconfigurable fabrics have also been proposed that reduce the com-

plexity and area of each LE so that each cell implements one bitslice of an arithmetic operation

with no extraneous logic or configuration bits [53]. However, all these specializations designed

to improve arithmetic are severely degrading to non-arithmetic Boolean operations. According

to [53], even purely DSP applications average about 25-30% random logic with arithmetic op-

erations accounting for approximately 60% of logic on average, and the remaining design space

devoted to multiplexing. The cumulative effect is that, while 60% of DSP logic is arithmetic,

40% is not. Recall from Table 1.1 that the average prevalence of arithmetic in a sampling of

designs is 14.2%. The simple fact is that non-arithmetic LEs dominate the design space for the

majority of designs, and continue to make up a significant portion of LEs in DSP applications.

Table 2.1 gives observed component delays for commercially available architectures. These

values represent the parameters used to estimate design performance available in Xilinx and

Altera architectures and design tools. The standard wire delay used for a carry chain is 0ps in

all cases, while the variable routing delay typically lies in the range of 300ps to 1.5ns across

all process technologies and architectures. LUT and carry chain logic latency is in all cases

significantly smaller than that of the variable routing delay. Additionally, as process technology

size shrinks, LUT delay follows suit, but routing delay remains reasonably static due to the

trade off between speed and wire size. In most circuits, this correlates to 70% of the delay

www.manaraa.com

19

being due to expensive routing traversals, and most of the remaining 30% due to the LUTs.

Almost none of the delay is due to the carry chain logic/interconnection.

Hardwired connections have been explored as a means for saving space within the general

routing array by providing dedicated connections between computing components in [19], and

have been commercially introduced by the Xilinx 4000 series [75]. The Altera Stratix and

Xilinx Virtex II Pro chips also incorporate specific instances of hardwired connections in the

form of cascaded LUTs and sum-of-product (SOP) chains, respectively.

Hardwiring connections between computing elements in the realm of FPGAs results in a

dedicated connection between 2 or more LUTs. An example is cascaded 4-LUTs with each

output driving a subsequent LUT’s input and having the ability to be tapped for other pro-

grammable connections. The idea is explored in [19] with moderate success, although the

constraints imposed by hardwired connections tend to mitigate their benefit. Mapping is per-

formed in two steps: 1) a set of hardwired logic block (HLB) segments is generated and 2)

these segments are packed to minimize the number of HLBs in the final netlist. A technology

library is used to match the HLBs to a directed acyclic graph (DAG).

Experimentally, three basic HLB topologies are assumed and all LUT outputs are available

to programmable routing. The three topologies considered feature LUTs of varying width,

including all combinations of 2-LUTs with less than 4 levels, all 3-LUTs with 3 or fewer levels,

all 4-LUTs with 3 or fewer levels and 9 or fewer LUTs, all 5/6/7-LUTs with 2 levels, and

those with 3 levels and 6 or fewer LUTs. The finding is that hardwiring generally leads to

area increases unless the number of hardwired connections is low. By instituting dedicated

connections between LUTs, synthesis becomes a more difficult task and only produces small

to moderate performance gains. Later in [10] architectural families are considered, wherein

a variety of FPGAs might be offered, each tuned with a different hardwired topology. The

finding is that hardwiring generally leads to area increases unless the number of connections is

low. Typical family structures found to be somewhat advantageous include deep LUT chains

(similar to carry chains), or wide topologies where one LUT receives a fraction or all of its

inputs from parent LUTs. A family of 8 different topologies is found to outperform a family

www.manaraa.com

20

of one 12-14% in area, and 18-20% in speed. However, this does not account for the cost in

maintaining and fabricating large chip families.

Xilinx provides for wide Boolean functions through high-level HDL macros and primitives.

The Xilinx V2P library guide denotes how wide homogeneous Boolean expressions (e.g. 16-

input AND) can be formed using the carry chain, but synthesis does not identify and implement

all such components, nor are the primitives recognized by ISE v9.1. Wide functions are formed

by configuring each LUT to an identical function and using them to either propagate cin or a

programmable 0/1. It is easy to implement a simple homogeneous expression such as a wide

AND/OR/NAND/NOR, however it is much more of a challenge to design anything complex.

The only recourse is for the designer to implement such expressions, from scratch, using low-

level LUT and carry chain primitives.

The Xilinx V2P provides for more complex SOP expressions through a dedicated sum-of-

products OR gate, denoted ORCY, located in each slice. The ORCY combines the cout of the

current slice with the ORCY output of the an adjacent slice not included in the current carry

chain. In this manner, it can be combined with the wide Boolean function implemented with

the carry chain to form even wider operations of up to 64 inputs. This is not to say that it

can implement all 2264
possible 64-input functions, but rather can be used to create a subset.

Nevertheless, the SOP functionality has been discontinued in the Virtex 4/5 architectures.

In the Altera Stratix architecture [6], a hardwired connection has been allocated that is

capable of connecting LUTs residing in the same cluster in a chain. Its operation is similar

to chains except that the full K-LUT drives the subsequent LE. LUT chain consumers are

identified by Quartus during PNR according to undisclosed metrics. Its functionality is similar

to that of the architecture proposed by this work. The differences between the approaches will

be outlined in Chapter 3 during the presentation of the chain reuse architecture. However, it is

important to note that the Stratix II/III architectures have discontinued the pure LUT chain

functionality in lieu of shared arithmetic mode and 3-operand arithmetic.

www.manaraa.com

21

2.2 FPGA Design Flow

The typical FPGA design flow cosists of five primary steps: synthesis, technology mapping,

clustering, placement, and routing. Synthesis elaborates a hardware description language

(HDL) into a Boolean network. Technology mapping implements the resultant network into

the specific device according to its architectural characteristics. Typically technology mapping

encompasses different granularities of logic elements, such as LUTs and LEs. The process

of mapping LEs into groups is commonly referred to as clustering. Place and route assigns

clusters to specific locations within a fabric and configures the routing array to provide the

necessary connectivity.

Each step in the design flow directly influences the performance of the resultant circuit

and the effectiveness of subsequent steps. For example, if synthesis produces a poor result,

technology mapping, clustering, and PNR are of no consequence because their ability to over-

come poor results is limited. Changing any component of the design flow cannot be performed

in a vacuum–its effects extend to all other areas. Quite often researchers address this aspect

by looking ahead in an effort produce intermediate design solutions that are more palatable

to consequent stages. This is exhibited in techniques like congestion aware synthesis, which

facilitates easier to achieve and higher performing PNR solutions. To assess the changes to

any one of these steps, some must be known about the aims and methods of each.

2.2.1 Behavioral specification and Multi-level Synthesis

Perhaps HDL elaboration and generation should be thought of as a step in and of itself.

Verilog and VHDL, the two most common HDLs, were originally used to document and sim-

ulate designs created at the gate and transistor level. Eventually, the speed with which these

languages allowed designs to be created in increasingly complex systems caused them to be-

come the primary vehicle through which circuits are synthesized. However, their accuracy is

highly dependent upon the skill of the designer and their ability to convey an idea, concept,

or specification to a machine-consumable description. Unfortunately, this reliance on human

www.manaraa.com

22

Figure 2.5 A carry-chain induced partition.

intervention and ingenuity at the nascent stage of the design flow has a decisive impact on the

the performance of the application.

One of the major concerns of software engineering is to reduce programming errors in

software and increase its reliability. This applies to HDL designers with respect to their ability

to correctly map a behavior to a component. For the most part, the designer and HDL are

responsible for identifying the higher granularity structures of the design, such as dedicated

multipliers, block RAM, and arithmetic chains. HDL can describe such structures in a way

that an elaboration/synthesis tool can infer them, or macros and primitives can be used to

ensure their incorporation. Figure 2.5 conceptualizes how HDL arithmetic operators explicitly

define an arithmetic carry chain in a Boolean network.

Arithmetic chains and other higher granularity structures essentially partition the design

in the same way as sequential logic (such as FFs) and primary I/O. The corresponding effect

this de facto partitioning has on a Boolean network during synthesis, technology mapping,

clustering, and PNR is largely undetermined. Fewer degrees in freedom could just as easily aid

a largely heuristic design flow by allowing the exploration of a larger fraction of the solution

space in less time, as it could remove constraints and foster higher performance. In fact,

Quartus II employs incremental compilation in which parts of an application can be highly

www.manaraa.com

23

optimized individually or intellectual property reused, and protected from modification by

subsequent design flow traversals [5]. The hardwired FPGA outlined in Section 2.1.2 and

presented in [10] indicates that replacing routing with hardwired connections is both good

and bad. Using non-programmable, dedicated routing structures helps increase speed, yet

introduces enough additional complexity that it also increases design area.

Synthesis takes the elaborated behavioral description of an application and optimizes its

Boolean network. If the HDL specifies a sequential design, the associated latches and flip-flops

(FFs) are implemented, causing the design to be partitioned such that all cycles in the design

are disrupted by a memory structure. The result is a register transfer level (RTL) specification

of Boolean gates and sequential logic structures. The goal of synthesis is to optimize the

network, or each partition of the network, such that delay (maximum logic depth) and area

(number of gates) are minimized.

Two-level synthesis is the process of constructing a network using product-of-sums or sum-

of-products descriptions of each output and is an ideal fit for Programmable Logic Arrays

(PLAs). While the two-level approach is effective for small networks with limited I/O, it

quickly leads to unmanageable implementations requiring too many resources as circuit sophis-

tication increases. Multi-level synthesis is more suited for today’s complex circuits because,

instead of forcing Boolean functions to be implemented as wide two-level functions, multiple

levels are allowed. Multi-level synthesis typically incorporates two-level techniques, coupled

with algebraic factorizations and other heuristic strategies. Current state-of-the-art multi-level

synthesis tools for FPGAs are those available commercially. Traditionally, the most common

academic tool has been SIS [66], which was initially released in 1992. One limiting factor of SIS

is that does not support the today’s common dedicated structures, such as arithmetic chains,

during netlist optimization.

Recently, SIS has given way to ABC [59] as the synthesis tool of choice for academics. ABC

is characterized by its integration of logic synthesis, technology mapping, and retiming [60].

ABC uses AIGs (multi-level logic networks composed of two-input ANDs and inverters) as

an internal representation to simplify the data structures and allow a natural transformation

www.manaraa.com

24

to functional representations such as binary decision diagrams (BDDs) and SIS’s traditional

sum-of-products (SOPs). ABC primarily uses Boolean satisfiability (SAT) as its optimization

technique, and extends it into technology mapping.

Progress in the synthesis/mapping realm has slowed significantly recently, with few new

contributions having been made since the 1990s. The optimality of current solutions is studied

in [23] using benchmarks with known optimal synthesis and technology mapped solutions.

Work in [23] presents a method for producing benchmark circuits of two types, Logic synthesis

Examples with Known Optimal (LEKO) solutions, and those with Known Upper bounds

(LEKU). The performance of synthesis and technology mapping tools, such as SIS/DAOmap

and ABC mapper is often measured relative to other techniques, not versus benchmarks with

known optimal solutions. The popular MCNC suite [76] has been used pervasively throughout

the CAD community in the design of algorithms. However, what has occurred is that synthesis

and mapping algorithms have become very efficient at producing solutions for that specific set

of circuits, resulting in the stagnation of synthesis research and few new innovative solutions.

A similar performance plateau in the performance of ASIC-specific algorithms occurred

once solutions reached 1.66-2.53x optimal. Soon after the realization of a plateau, a rush

of new techniques, including FastPlace [72], rapidly reduced VLSI routing to roughly 1.2x

optimal. In general, small improvements relative to existing techniques get exposed as still

far-from-optimal improvements. Using ABC, SIS/DAOmap, Xilinx ISE, and Altera Quartus

II to solve LEKO and LEKU circuits, the best academic and industrial FPGA synthesis and

technology mapping tools are shown to produce solutions ≈ 70x optimal area and, in some

cases, ≈ 500x larger than known upper bounded examples. Results indicate FPGA synthesis

solutions are far from optimal.

2.2.2 Technology Mapping

There are many variations on technology mapping in literature. The four common goals of

technology mapping are: 1) minimize delay (polynomial [20]), 2) minimize area (NP-Hard [30]),

3) minimize power consumption (NP-Hard [31]), and 4) maximize routability (NP-Complete

www.manaraa.com

25

[73]), with many techniques trying to achieve solutions of any combination thereof. Over the

years, many algorithms have been presented that first attempt to yield a depth optimal result

and then try to heuristically reduce area, power consumption, and/or routing complexity.

Unfortunately, the optimal solution of multiple performance metrics simultaneously has been

proven to be NP-complete [30]. Initial solutions to depth optimization in technology mapping

of Boolean networks incorporate libraries and are shown to be NP-Hard [46]. In the DAGON

strategy, a Boolean network can be decomposed to a set of fanout-free trees with optimal

technology mapping performed for each tree independently using dynamic programming [46].

However, the 22k function set implemented by a K-LUT proves too large to be manipulated

efficiently. Nevertheless, dynamic programming is shown to be a very capable approach to the

problem of technology mapping.

MIS-pga [61] combines layout synthesis with mapping. It performs mapping in two phases:

1) an infeasible network (i.e. one with nodes greater than K inputs) is made feasible by recur-

sively splitting nodes through kernel extraction or classical Boolean function decomposition,

and 2) the feasible network is optimized by collapsing pairs of nodes or collapsing clusters of

nodes. MIS-pga uses different decomposition techniques, each for a different situation: cube

packing, co-factoring, AND/OR decomposition, and disjoint decomposition.

Chortle-crf, presented by [34], is one of the first technology mapping algorithms for LUT-

based FPGAs to use bin packing. The work of Chortle-crf is continued in [35] with the goal

of reducing the delay of combinational circuits in LUT-FPGAs due to logic LEs. Chortle-d

presents a bin-packing approach to finding the minimal depth of a given network, represented

as a forest of DFS trees. Chortle-crf is used to map the LUTs efficiently, followed by a reap-

plication of Chortle-d to the paths in the network that exceed the minimal depth. LUTs with

a single output are merged with downstream LUTs if they do not violate the width of the

K-LUT. The Chortle-d algorithm is shown to provide a local depth-optimal solution [33].

DAG-Map [18] improves upon Chortle-d by considering the entire network and is optimal

for K-LUT trees. A helper algorithm, DMIG, transforms an arbitrary network into a 2-input

network with only a O(I) factor increase in network depth, where I is the number of PIs to the

www.manaraa.com

26

network. DAG-map uses K-feasible cones, which consist of a node and its predecessors such

that any path connecting a node in the cone to the output node lies entirely in the cone. If the

number of inputs to each cone is less than or equal to K, so that any K-LUT can implement

a K-feasible cone. The level of the output node is the length of the longest path from any PI

node to the given node. The depth of the network is the largest node level in the network.

DAG-Map formulates the problem as a covering of a given network with K-feasible cones that

are not necessarily mutually exclusive.

The first step in technology mapping with DAG-Map is to decompose the Boolean network,

G, and then transform it into a 2-input network (i.e. each gate has at most 2 inputs). DMIG

replaces each K > 2 gate with a balanced binary tree of the same gate type (gate function must

be associative) and yields an increase in depth by as much as Ω(lgn). The resultant depth of

the DMIG transformation is depth(G′) ≤ lg(2 · d) · depth(G) + lg(I), where d is the maximum

degree of fanout in G. DMIG is important because it yields a network that K-bounded,

i.e. all nodes possesses less than or equal to K inputs–a requirement for many technology

mapping algorithms. It also increases the mapping technique’s solution space through node

decomposition.

The second step is to apply the DAG-Map mapping algorithm which has two phases:

labeling the network to determine each node’s level in the final solution and generating the

logically equivalent network of K-LUTs. The general approach to DAG-Map is that for any

node in a network tree, it joins logic depth p if it can, where p is the maximum level of any

of its predecessors, else it must be implemented at level p + 1. It relies upon tree structures

to ensure a monotonic increase in the number of inputs per node. The advantages of this

technique are that it works on the entire network, does not have to decompose the network

into fanout free trees, can implicitly replicate nodes to minimize delay, and is optimal when

the initial network is a tree but not when it is an arbitrary network. DAG-Map is designed to

minimize depth, not area, and accordingly, two post-processing steps are used to reduce the

final design without increasing depth. Overall, DAG-Map does better than either MIS-pga or

www.manaraa.com

27

Chortle-d with the exception of runtime and lays the groundwork for optimal depth technology

mapping.

FlowMap [20], a continuation of DAG-map, is the first technique to map an arbitrary

Boolean network to a K − LUT architecture with optimal logic depth in polynomial time.

It works by using the Max-flow Min-cut algorithm for network flows, which says that the

maximum flow through a network is found at the minimum flow capacity cut in the network

[32]. Using this, K-feasible cuts are found within the network to combine gates in the same K-

LUT at minimum logic depth. FlowMap has the same basic approach as DAG-Map, except that

it successfully solves arbitrary networks through incorporation of network flow computation.

It is also shown to yield minimal area designs through the similar post-processing techniques

to DAG-Map.

The ingenuity of FlowMap is that it uses the application of network flows to solve the

monotone cluster constraint [52] for LUT inputs that hinders previous approaches. The number

of inputs of a programmable logic block is not a monotone clustering (e.g. mapping) constraint,

and therefore the solution of network H does not imply anything about network G where

G ∈ H. For H that satisfies some constraint Γ, it is implied that any subnetwork G where

G ⊂ H also satisfies Γ. For K-LUT formation, this is not the case. It may occur that removing

a node v ∈ H, where |input(H)| ≤ K, creates G = H − {v}, such that |input(G)| > K. This

occurs if G ∪ {v} causes one or more of input(G) to be made internal to H. If the clustering

constraint is monotone, tools as early as 1969 [52] provide an optimal polynomial time solution.

However, until the presentation of FlowMap and its use of network flow, the solution of LUT

mapping for arbitrary Boolean networks was sub-optimal. Various approaches could provide

optimal solutions for a subset of topologies in polynomial time, but not for arbitrary Boolean

networks.

FlowMap works similar to DAG-Map, in that it is a dynamic programming approach that

identifies whether or not nodes are capable of joining a K-LUT without causing it to violate

K-feasibility. However, instead of relying on the topology to enforce the input monotone

constraint, FlowMap uses network flows to establish a minimum height K-feasible cut in an

www.manaraa.com

28

arbitrary network. In the labeling phase of FlowMap, nodes are labeled such that each node

has a label that is greater than or equal to all of its predecessors, where the label signifies

the optimal logic depth of the node. The variable p is the maximum label of the nodes in

input(t). Nt are the predecessors of t, referred to as the cone of t. FlowMap creates a DAG

that collapses all of the predecessors of t with label p into t to form t′, signifying LUT (t), and

then constructing a flow residual graph so that the Max-flow, Min-cut algorithm [32][26] can

be applied to find the minimum height K-feasible cut in Nt. If a K-feasible cut can be found,

t is labeled p and a K-LUT can be constructed of the nodes designated by the cut and the

nodes contained in t′. If a K-feasible cut cannot be found, t is labeled p+1 and is implemented

in a new K-LUT.

The mapping phase consists of using the labels and the K-feasible cuts found in the first

phase to construct K-LUTs. Starting from the POs of the network, K-LUTs are constructed

using the K-feasible cuts during labeling. Each node in the network either implements a K-

LUT containing it and its predecessors included in the K-feasible cut, or is implemented as

another node’s predecessor. In this way, not all nodes are explicitly implemented and node

duplications are carried out implicitly.

FlowMap and its derivative algorithms have provided the base solution to the technol-

ogy mapping problem for FPGAs with regard to producing logic depth optimal designs in

polynomial time. However, they do so by viewing the FPGA architecture sans the valuable

carry-chain resource that has become industry standard. This carries with it the assumption

that the nets connecting LUTs are all general routing nets. Yet, circuit delay is not just dic-

tated by the number of logic elements required, but also by the number of routing and carry

nets traversed. A static arbitrary net-delay model version of FlowMap has been presented

[21], but it necessitates that the delay of each net be predetermined. Carry chains also have

the special constraint of being a point-to-point connection between adjacent cells, a constraint

that must be addressed if valid implementations with arbitrary net delay FlowMap are to be

generated [21].

An extension or alternative to network-flow based technology mapping is cut-enumeration.

www.manaraa.com

29

In cut-enumeration, all possible K-feasible cuts are computed for the network, and each are

considered relative to all others in an attempt to find the best combination of cuts. Though

cut-enumeration considers both deal and area during mapping, its drawback is that it is very

high in computational complexity, requiring the consideration of O(nK) cuts. Cut enumeration

strategies are described by how they perform cut generation, the process of computing cuts, cut

ranking, which aims to compare the cuts of a given node according to optimization objectives,

and cut pruning, which describes the process of eliminating less desirable cuts [25].

CutMap [22], one of the first techniques to employ cut enumeration, does so under the

auspices of network flow computation. Using the optimal depth of a network as a bound,

CutMap uses alternative cuts and heuristics to create the fewest number of LUTs possible.

The first phase of the algorithm uses network slack computation to first determine a minimum

height or minimum cost cut for each node. Predicted cost, using maximum fanout-free cones

(MFFCs), is determined according to the likelihood of a node being implemented by an LUT

during mapping. Roots of large MFFCs are likely to be contained in an LUT, with a K-

feasible cut through an MFFC will result in more nodes being implemented. In the second

phase, actual cost is computed optimally in O(2KmnbK/2c+1), where m is the number of edges

and n the number of nodes. The average CutMap solution yields 0.78x LUTs than FlowMap.

Accelerating the cut ranking procedure is done in [25] with metrics such as duplication-

free mapping, whose goal is to prevent separate maximum fanout-free cones from implementing

common subtrees. The ability to determine how to optimally map a multiple-output node is

the primary reason why area minimization is NP-hard [30]. Cut pruning reduces run time

by selecting the most desirable cuts created during generation and ranking. Pruning is made

more efficient by eliminating undesired cuts before their generation by identifying non-essential

sub-cuts (branch and bound). Cuts can be subsets of many other cuts, but non-essential sub-

cuts belong to no cuts that possess a “best” rank, and thus can be safely eliminated from

consideration. Likewise common sub cuts can be used by descendants to construct their cuts.

Results for the cut enumeration techniques presented in [25] indicate it produces reduced or

area neutral designs at a fraction of the runtime of other common cut enumeration approaches.

www.manaraa.com

30

One of the most recent cut enumeration methods, presented in DAOmap [17], also stresses

the number of potential node duplications during enumeration to more accurately map area-

minimal designs. Again, the cuts of the target node’s predecessors are used to form the target

node’s cut. A binate covering algorithm gives an optimal solution in exponential time and

heuristics are used to make the runtime more reasonable. DAOmap progresses in three stages:

1) use potential duplicates to minimize area from a global point of view, 2) enforce timing

to relax non-critical paths, and 3) perform iterative cut selection. The worst case number

of cuts for any node is O(nK), making cut pruning as outlined in [25] critical, especially

for K ≥ 7. Area cost for each node v is propagated as the predicted area of each Uc +∑
u∈input(Cv)[Au/|output(u)|], where Uc is the area contribution of cut Cv and Au is the area

of each u ∈ input(v) amortized over its fanouts. In this fashion, when the fanouts of any

node u re-converge, the area of the cut is their sum. Combining area cost with the constraint

of optimal mapping delay using arrival time, DAOmap produces 16% area reductions over

CutMap while producing a run time speedup of 24.2x.

ABC [59] integrates logic synthesis and technology mapping using AIGs to facilitate the use

of cut-enumeration. The contribution of ABC is that node implementations determined each

optimization pass are remembered for future use, a prospect made possible by the simplicity

of the AIG representation. In this manner, the solution of multiple metrics can be achieved

over multiple iterations. The number of iterations and the history of node implementations

can be varied to change the number of re-mappings that are pursued. ABC also uses Boolean

SAT to perform technology mapping.

An alternative approach to cut-enumeration and network flow based technology mapping

is Boolean matching [9], as used in ABC. While an effective mapping technique, Boolean

matching is potentially capable of identifying chains in a Boolean network. Boolean matching

techniques attempt to map an n-input logic function to a m-pin hardware module through

to Boolean satisfiability (SAT) matching techniques. The work in [65] outlines the basics of

Boolean SAT and addresses some of the obstacles to its use. It is characterized by a 2-stage

approach that first coarsens the network by assuming that every m-pin hardware module is

www.manaraa.com

31

capable of implementing a m-input function and second provides detailed acceptance/rejection

of stage 1 results.

Assuming that a m-pin hardware module can implement all m-input functions is not real-

istic, but allows a partitioning of inputs to be formed and eliminates large subsets of solution

space that are infeasible even for an m-input function. Boolean SAT is targeted toward pro-

grammable logic blocks consisting of arbitrary topologies, such as two K-LUTs sharing K − 2

inputs (as in the Stratix II ALM). In this example, two LUTs sharing inputs can not implement

all (K + 4)-input functions, but rather just a subset. Boolean SAT techniques typically use

branch and bound approaches to identify infeasible solutions, as well as those that are closely

related, and eliminate them from consideration. The second, detailed phase eliminates solu-

tions from phase one that not SAT. The whole process is accelerated by eliminating as many

solutions as possible and creating valid pin partitions in phase one. Experiments using the

proposed technique demonstrate a 340% run time improvement and 27% additional mappings

over previous Boolean SAT methods. A chain can be viewed as a (K − 1) ·L+ 1 pin hardware

block, thus Boolean SAT techniques offer one possible avenue for their mapping. However,

even for modest chains of length L = 16 and K = 4, the solution of a 49-input function is

required–a far cry from the 11-input functions to which Boolean SAT is currently applied.

Chains have the potential to quickly overwhelm Boolean SAT techniques.

Similar to synthesis, since the 1990s few new notable technology mapping algorithms have

been presented in literature. Tools and algorithms worth mentioning, such as IMAP [56],

Hermes [70], DAOmap [17], and ABC mapper [59] attempt to further reduce the area impact

of logic depth optimal designs. Optimality of synthesis and technology mapping [23][54] studies

indicate that currently, given optimal synthesis solutions, technology mapping tools are capable

of producing results ranging from Quartus’ 1.03x to DAOmap’s 1.22x of optimal. However, the

technology map is usually hindered by the inability of synthesis to produce a good result on

which mapping can be performed. Commonly, techniques that blur the line between synthesis

and technology mapping yield better results, as in Quartus II and ABC.

Overall, approaches to technology mapping present useful techniques in minimizing logic

www.manaraa.com

32

depth in FPGAs, but often use an incorrect notion of where the delay in the combinational

circuit is encountered–the bulk of the delay is not in LUT depth, but rather interconnection

delay between those LUTs. This assumption is based on the idea that there are no quick

connections between LUTs, and thus minimizing the LUT depth minimizes the delay through

the circuit. Re-timing and placement-aware techniques have begun to address this fact, but

do not provide a direct avenue for assigning logic chains optimally. No tools currently address

chains directly, instead deferring to HDL macros.

2.2.3 Logic Clustering

As FPGAs have evolved, it has been shown that grouping similar LEs to share resources

can lead to increased circuit efficiency. These groups of LEs, known as clusters, share control

signals and general routing access, as well as connect to each other using local routing, as

in Section 2.1. Clustering reduces global overall design complexity, and thus simplifies the

problems of placement and routing [12]. The island-style FPGA, presented in [50], has become

commonplace among commercial architectures.

At the time of the publication of [11], not much work had been done on island-style FP-

GAs. It boasts itself as the first work to investigate the use of logic clusters within a 2-level

hierarchy in a flat FPGA architecture. Key cluster characteristics include the number of LEs

per cluster N , and the total number of distinct inputs to each cluster I. The cluster packing

tool it presents, Vpack, has been augmented to account for timing information in its current

incarnation of T-Vpack.

T-Vpack [12] works by selecting an LE with the most used inputs (as cluster inputs are

the hardest resource to come by), and then greedily selects the LE with which it has the most

in common until all cluster I/O or LE capacity is exhausted. In its simplest form (VPack),

T-Vpack chooses LEs to join a cluster based on the attraction of LE v to the cluster C, i.e. the

size of the intersection of the set of inputs of the LE and the set of unique inputs of the cluster,

as per Equation 2.1. The greater the size of the intersection, the more signals the LE and the

cluster have in common. This correlates to greater sharing of signals which utilize the interface

www.manaraa.com

33

between local and general routing. It also implies that connections formed amongst LEs within

the same cluster are desirable, but not expressly encouraged. In the Vpack approach all LEs

are tested and the LE with maximum attraction is chosen to join the cluster.

attraction(v) =
|nets(v) ∩ nets(C)|

I +N +M
(2.1)

Gain is a useful metric in associating the best LEs for inclusion in the same cluster. How-

ever, architectural constraints can lead to the disqualification of the highest gain LE. An LE

is allowed to join a cluster if it subscribes to each of three constraints:

1. Its inclusion does not exceed the maximum number of external cluster inputs, I.

2. Its inclusion does not exceed the maximum number of external cluster clocks, M .

3. The total number of LEs has to be less than the cluster size, i.e. |v ∪ C| ≤ N .

T-Vpack also incorporates a gain function that combines attraction with timing estimation.

Timing criticality is defined using the notion of slack. The slack between two nodes, u and

v in a timing graph is computed using Equation 2.4. It measures the delay from PIs to a

node u with Tarrival(u), and the delay from POs to u, given the max arrival time (i.e. critical

path), in Trequired(u). Given arrival and required time at each node, the slack between any

pair of timing graph nodes can be computed, and indicate the base criticality of any given

path through the network using Equation 2.5.

Tarrival(v) = max∀u∈input(v){Tarrival(u) + delay(u, v)} (2.2)

Trequired(v) = min∀u∈output(v){Trequired(u)− delay(v, u)} (2.3)

slack(v, u) = Trequired(u)− Tarrival(v)− delay(v, u) (2.4)

baseCrit(v) = ∀u∈input(v)1−
slack(v, u)
MaxSlack

(2.5)

(2.6)

Base criticality (Equation 2.5), the dominant component of criticality, reflects the max-

imum critical input into LE v and is normalized to the most critical net in the network.

www.manaraa.com

34

However, the base criticality is not unique in the network, and in most cases is quite common.

Therefore, a two-level tie breaker system is incorporated and scaled with ε and combined with

base criticality to form Equation 2.8. The first tie breaker measures the number of critical

paths on which v resides. Equation 2.7 is multiplied by a nominal value of ε ≈ 0.01 to add a

bias toward nodes with more critical paths in common with cluster C. The second tie breaker,

DPI(v), accounts for node v’s location within a network path, and is scaled by ε2 ≈ 0.0001.

DPI(v) measures the maximum distance, in LEs, that node v is from circuit PIs. Alternately,

distance from POs is equally valid, the goal being that a path be clustered from terminal to

terminal and not beginning in the middle. If a path’s intermediate nodes are clustered before

its ends, the path will likely require a greater number of clusters to implement, and more

general routing traversals, ultimately increasing the cost of the clustered solution.

In T-Vpack, the gain of adding LE v to cluster C is given by Equation 2.9. It combines

attraction and criticality with a scaling factor, γ, that is experimentally determined as 0.75

[12]. If γ = 0, then the clustering is the original Vpack, conversely, if γ = 1 clustering is purely

connection driven. The normal operation of T-Vpack fills a cluster until resources are expended,

however, in some cases, clusters with fewer than N LEs but I inputs can accommodate more

LEs. If a cluster reaches a point where no other LEs can be accommodated because I has

been reached, but |v ∪ C| < N , T-Vpack invokes a hill-climbing mode. LEs are added to a

cluster even if it becomes infeasible regarding I, because it may occur that subsequent LEs

can return the cluster to viability. If a net’s source terminal is added to a cluster containing

at least one of it’s sink terminals, an input is saved. In some cases adding LEs will cause a net

to become completely internal to the cluster, also saving an input pin. Hill-climbing mode has

been shown to improve the clustering solution’s logic utilization by 1-2%.

critPaths(v) = inCritPaths(v) + outCritPaths(v) (2.7)

criticality(v) = baseCrit(v) + ε · critPaths(v) + ε2 ·DPI(v) (2.8)

gain(v, C) = γ · criticality(v) + (1− γ) · |nets(v) ∩ nets(C)|
I +N +M

(2.9)

Based on a LE using a 4-LUT and considering early FPGA architectures, a cluster con-

www.manaraa.com

35

taining N LEs needs K ·N inputs for complete global connectivity (i.e. every LUT input can

reach the general routing array). Experiments using T-Vpack indicate that the full connectiv-

ity found in Xilinx and Altera FPGAs is likely over-aggressive, and for K = 4 only I = 2 ·N+2

inputs are required for 98% cluster utilization. Additionally, cluster sizes of 4 are about 5-10%

more area-efficient than no clusters. Other works find a cluster of size 4 LEs to be the most

area efficient, while 5 and 6 inputs are found to offer the best performance. A revisit of N and

I for more recent FPGA architectures in [4] finds that I = K
2 · (N + 1) achieves 98% cluster

utilization and N = 8 is the most efficient clsuter size.

To more successfully address routing complexity during clustering, R-pack [14] institutes

a routability-based scoring function. It operates on the precept that by addressing the factors

that affect routability, the cumulative routing cost can be reduced, as expressed by Equation

2.10. Total routing cost, given by Equation 2.10, is designed to increase as the number of pins

of a net increases, but the rate of increase diminishes as nets become larger. The more pins a

net contains, the more difficult to route, and the higher α(x). However, once a net becomes

sufficiently large the increased difficulty in routability caused by adding one more pin becomes

less and less [16].

Rcost =
∑

x∈Nets

Nx · α(x) (2.10)

α(x) = 2− 1
pins(x)

(2.11)

R-Pack is built using the T-Vpack clustering engine, and uses a slightly different method

of computing gain. The scoring system assesses the impact of LE v joining cluster C, where

each net incident on v gets 1 point for every edge consumed, 1 point for input-pins saved, and

1 point for output pins saved. On the other hand, new nets to the cluster result in a 1 point

deduction for a new input pin, and no points for a new output pin. The score of an LE joining

the active cluster is the sum of the scores of its nets. The R-Pack scoring criteria addresses the

routing cost of Equation 2.10 only indirectly. Place and route experiments indicate R-Pack is

able to reduce channel width by 16.5% over Vpack, on average.

www.manaraa.com

36

iRAC [67], aims to address routing cost through bias toward low fanout nets and clustering

with the underlying FPGA architecture in mind. Rent’s rule is used to govern the population

of clusters such that each cluster’s connectivity mirrors that of the FPGA routing architecture.

To achieve this, cluster utilization is limited through restricting the number of inputs used per

cluster explicitly. In this manner, congestion is limited because the clustering solution more

closely matches the connectivity of the architecture. Place and route experiments indicate

iRAC is able to reduce channel width over R-Pack and T-Vpack by 35%, on average.

Work in [71] also clusters with the architecture in mind, but instead limits the number

of LEs per cluster. It uses the T-Vpack and iRAC approaches in conjunction with limiting

cluster utilization to address routing channel width constrained FPGAs. Through localized

depopulation of clusters, an unroutable design can become routable. By clustering with the

underlying architecture in mind, the perception of the clustering solution more closely matches

architectural realities.

The cluster-seed approach has been adopted by many publicly available tools. It works by

populating an active cluster until no additional LEs can be accommodated. An empty cluster

is first seeded with an LE that influences which subsequent LEs are added to the cluster. Thus,

the seed LE becomes of particular importance, as it ultimately dictates how each cluster is

populated. iRAC, T-VPack, [71], and RT-Pack each use the cluster-seed approach. T-VPack,

chooses the cluster seed as the LE with most external inputs, attraction, or with the highest

timing-based criticality [12]. RT-Pack mixes routing cost impact into the equation [15].

Other clustering approaches deviate from the cluster-seed model through the use of more

complex approaches. The tool presented in [47] aims to consider intra-cluster and inter-

cluster resources separately, and then combine these factors to in an overall cost function.

The clustering solution is generated using simulated annealing and requires on the order of

500× (Total LEs) iterations to arrive at a solution. Place and route experiments indicate an

average 19% reduction in channel width, 13.5% reduction in chip area, and a 9.3% reduction

in critical path delay over T-Rpack.

A top-down approach presented in [58] uses hMETIS-Kway [45] in a 2-step algorithm

www.manaraa.com

37

which first produces k-partitions of the LE network, and in the second phase applies resource

constraints to create a feasible cluster network through relocating LEs. Place and route exper-

iments indicate an average 15% reduction in routing channel width over T-Vpack and T-Rpack

with nearly identical critical path latency.

Clustering solutions abound in literature, but none deal with chains explicitly. Chains are

assumed to be mapped from head to tail, according to HDL, regardless of routability. The

primary reason for this is that chains effectively dictate the clustering solution. Little flexibility

us afforded by chains because all of their members must be clustered contiguously. Chains can

be segmented such that whatever inter-LE gain they do possesses can be taken advantage of.

2.2.4 Place and Route

Commercial PNR tools are highly proprietary in nature, largely because they are com-

monly tailored to a specific architecture. The most prevalent open source academic tool, VPR

features automatic architecture generation using designer-specified foundry parameters, simu-

lated annealing based placement, and routability or timing driven routing. VPR incorporates

a routing resource graph which describes switches as edges, and clusters, IO pads, ports, and

routing channels as nodes. VPR is presented in its entirety in [12] and commonly used in

conjunction with T-Vpack.

The placement procedure uses simulated annealing to place clusters according to three

different cost functions. The effectiveness of simulated annealing depends on the initial tem-

perature, the number of moves per temperature, the variation of temperature throughout

annealing, and the termination of the process, which are known collectively as the schedule.

The VPR schedule is drawn from several previous works, including [42], [51], and [69]. They

have been combined to form an adaptive schedule that tailors itself to each unique problem.

VPR’s contribution is to adaptively tailor the schedule so that more time is spent when a

significant fraction of moves are being accepted, and less time spent at temperature extremes

where all or no moves are being accepted. Placement cost is determined through a combination

of timing, bounding box, and routing congestion information.

www.manaraa.com

38

In general, routing algorithms come in two styles. The first style is referred to as global-

detailed, and consists of one step during which the complete routing path of a net is determined,

including specific wires. The second style is a two-step algorithm that first performs global

routing to the pins and channels that will be used, and in the second step determines the exact

wires. Generally, performing global and detailed routing in two separate steps is infeasible

because the solution of the first step places too many constraints on the second, potentially

resulting in an unroutable design or one that is too computationally expensive to achieve in

real time. Global-detailed routing is usually capable of creating feasible solutions in reasonable

time.

Routing is performed through the use of a routing resource graph, shown in Figure 2.6

which has been partially excerpted from [12]. Figure 2.6(a) depicts a typical pair of clusters

in a FPGA, while (b) is its corresponding resource graph. Each node in the graph is given

capacity corresponding to the number of tracks though which connections can be routed on the

particular resource. Sink nodes, which represent LEs, are given a capacity of K while channels

(x, y) are given capacity equivalent to the number of wires they incorporate. Cluster outputs

serve as source nodes, and have a capacity of one. All other structures, such as I/O pads and

cluster ports (i1, i2, o1) are modeled with a capacity of one. In this manner, the connectivity

of the FPGA routing architecture can be modeled and the nets of a placed design routed.

To perform timing analysis and incorporate it in PNR, the ability to accurately model

the delays of the architecture is paramount. VPR incorporates a timing graph that models

each of the wire and component delays present in the FPGA defined by the user. Figure 2.7

depicts a simple circuit consisting of LEs, input pins, and the nets that connect them. In the

graph, nodes have no delay, while edges impose it. Therefore, an LUT would be modeled by

K + 1 nodes; K-input nodes, and 1 output node, with the delay from any input to the output

modeled by the edges between the two.

In a programmable routing architecture, the delay of each net varies and is dependent

on the switch boxes and wire lengths realized by the final routing solution. To use timing

information during placement, net delay is estimated by routing a single net between two

www.manaraa.com

39

Figure 2.6 Typical routing channel (a), and (b) its corresponding routing
resource graph.

Figure 2.7 Timing graph (a) circuit, and (b) its timing graph realization.

www.manaraa.com

40

random clusters in the array, measuring the delay, ripping the net up, an then repeating the

procedure. An average routing delay can ascertained for clusters of varying distances from each

other, allowing path and net timing driven placement to occur. In contrast, the component

delay of each LE operating in a specific mode is static. Intra-cluster connectivity and LEs are

VPR modeled with the following timing parameters:

• Tcomb - The delay from an LE input pin, through the LUT and output multiplexer, to

the output pin.

• Tseq in - The delay from an LE input pin, through the LUT to the FF input, and including

the setup time (Tsu) of the FF.

• Tseq out - The delay from the LE FF output, through the output multiplexer and to the

output pin, including the clock-to-Q time (TCO) of the FF.

• Tsopin sipin - The delay from a LE output pin to an LE input (local routing).

• Tcipin sipin - The delay from a cluster input pin to an LE input pin.

• Tsopin copin - The delay from a LE output pin to a cluster output pin.

The routability algorithm VPR uses is an iterated maze router based on Pathfinder negoti-

ated congestion routing [29]. The cost function incorporates the base cost, historical congestion,

and present congestion elements from the Pathfinder algorithm and a unique element referred

to as bend cost. The base cost quantifies the impact of using a particular resource, and the

historical and present congestion cost give the route a measure of how used a particular re-

source is currently and in previous routing iterations. The bend cost is designed to encourage

general routing to use as few orthogonal (x, y) connections as possible because they tend to

prevent the use of long lines and complicate detailed routing. Consequently, the bend cost

makes it easier to generate a detailed routing solution. Because global-detailed computes the

routing solution in one step, it’s use of the bend parameter is superfluous, and is considered 0.

VPR’s timing-driven routing algorithm is also based on the Pathfinder algorithm, but

improves upon it by incorporating an Elmore delay model and by dynamically changing routing

www.manaraa.com

41

resource costs. The advantage of the Elmore delay model over a linear delay model is that

it more accurately predicts routing connections that use chains of pass transistor instead of

buffers, or pass transistor based multi-fanout nets. Because pass transistors are commonly

used to implement multiplexer, subset, Wilton, and universal channel switch boxes, the Elmore

model is an ideal fit for FPGAs.

Using one of the two available routing algorithms, VPR generates an interconnection topol-

ogy to fit the given design. The basic interconnection of each topology remains the same, but

the number of tracks available in each channel (channel width) is computed via a binary search

until the minimum width that can accommodate the design is determined. Minimum channel

width is a useful performance metric for the routability of a design, but only when binary

search routing is employed. Another binary-search dependent metric is total transistor area.

It serves as a measure of the transistor area implemented by the switches and connection boxes

in the routing array and changes as the channel width increases. A metric not explicitly de-

pendent on binary search routing is total wire length, which measures the total length of wire

used for routing a design. Designs requiring a higher channel width, total wire length, or area

typically have more nets, higher connectivity, or both.

In dealing with chains during place and route, the only deviations from normal behavior

are that all clusters of a chain must be placed adjacent to each other, and the chain nets must

be implemented by the special chain resources. Routing between LEs residing in the same

chain is trivial, because there is only one valid possible route to choose from. The process of

placement is a bit more complex because chain LEs and independent LEs must be considered

concurrently. VPR placement works using a simulated annealing technique, where clusters are

swapped, the improvement of the move assessed, and the move correspondingly accepted or

rejected. The technique for single clusters can be adapted to a chain of clusters, as mandated

by the presence of chains, by swapping with group of clusters of equal size. The technique

outlined in [8] indicates how chains can be handled in the VPR environment. The process by

which chains are placed is as follows:

1. Clusters in the same chain are placed consecutively from column bottom to top.

www.manaraa.com

42

2. A cluster is selected at random, and if it is a member of a chain, it must be swapped

along with the other members of its chain.

3. A move will be determined legal if it does not violate any physical constraints of the

chip, or sever existing chains.

4. An illegal move will not be considered as a rejected configuration during simulated an-

nealing. It is simply discarded and another random cluster pair is chosen.

5. An accepted swap results in the movement of the entire contiguous chain.

6. If a swap of L clusters is accepted/rejected, it counts as a gain/loss of L.

The swap source and destination clusters dictate the range of clusters to be exchanged.

Let there be two randomly selected clusters Ai ∈ A and Bj ∈ B, where A and B are chains

with lengths LA and LB, respectively, and 0 ≤ i ≤ LA − 1 and 0 ≤ j ≤ LB − 1. The (x, y)

coordinates of Ai and Bj are swapped directly, requiring that the remainder of the ranges of

A and B be established by the maximum sizes of their terminals. The number of cells at the

tail of each chain to be swapped is max{LA− i, LB − j}, while the number of cells at the head

of each chain is max{i, j}.

Converting relative chain coordinates to the (x, y) coordinates of an array of clusters yields

Equation 2.13 and Equation 2.13. Figure 2.8 depicts an example swap of chains A and B

and their surrounding regions. The head swap consists of clusters (2, 1) through (2, 3) and

(6, 1) through (6, 3) because the maximum length is given by Lhead = max{4− 1, 4− 4} = 3.

Likewise, the tail swap consists of clusters (2, 4) through (2, 6) and (6, 4) through (6, 6) because

the maximum length is given by Ltail = max{5 − 4, 6 − 4} = 2. This corresponds to a total

swap length of Lchain = 5 clusters.

Lhead = max{yAi − yA0 , yBj − yB0} (2.12)

Ltail = max{yALA−1
− yAi , yBLB−1

− yBj} (2.13)

Lchain = Lhead + Ltail (2.14)

The clusters incorporated in the swap must contain chains A and B, but can also include

www.manaraa.com

43

Figure 2.8 Source and destination swap regions using relative chain posi-
tion.

independent clusters, unrelated whole chains, and empty clusters. The total number of clus-

ters (empty or populated) swapped is given by max{i, j} + max{LA − i, LB − j}. The only

constraints are that all cluster ranges must reside within the bounds of the array, the regions

cannot intersect, and no chain can be severed. Any region that violates any constraint is

deemed invalid, but not a rejected swap. An invalid swap is simply discarded and new ran-

domly selected swap clusters are chosen; it is not considered a simulated annealing accept or

reject. Any accepted swap results in a cumulative gain of max{i,j}+max{LA−i,LB−j}
2 relocated

clusters, according to whatever metric is employed. The routing of chains is trivial, as the only

available resource for routing is the chain net between clusters.

www.manaraa.com

44

CHAPTER 3. ENABLING THE ARCHITECTURE

FPGAs typically use ripple-carry schemes, or variations thereof, for area efficient arith-

metic. The Altera Stratix and Cyclone architectures [6] use a carry-select chain, characterized

in Figure 3.1(a). An LE operating in (K − 1) mode contains two (K − 1)-LUTs, one driving

a chain net through the cout port, and the other driving the general routing array trough gr.

Chains using (K − 1)-LUTs are also referred to as sub-width. These LEs facilitate chains as

in Figure 3.2(a). The Stratix also incorporates an LUT chain, characterized in Figure 3.1(b),

wherein one K-LUT simultaneously drives the same logic function to the chain net and gen-

eral routing. The Stratix LUT chain uses an auxiliary connection between LEs, separate from

the carry chain, to achieve K-LUT mode and form heterogeneous chains as in Figure 3.2(b).

Chains using K-LUTs are also referred to full-width.

3.1 Carry Chain Reuse Logic Element

To realize the full potential of the carry chain without extraneous interconnection, a novel

architecture is necessary. A modified carry-select architecture presented in [36] operates in

Figure 3.1 (a) (K-1)-LUT mode, (b) K-LUT mode

www.manaraa.com

45

Figure 3.2 (a) (K-1) carry-select chain, (b) {K−1,K} heterogeneous logic
chain

either mode depicted in Figure 3.1, and forms heterogeneous chains as in Figure 3.2(b). Het-

erogeneous chains are capable of using a combination of full and sub-width LEs. The reuse cell

supports heterogeneous chains without the additional interconnection required by the Stratix

LUT chain, instead reusing the existing carry chain. Generic logic chains require an LE that

can operates in either mode in Figure 3.1, i.e. the Stratix or the reuse LE presented here[36],

and are not currently suitable for Xilinx devices or the Stratix II/III.

The basic operation of a carry select adder bitslice, implemented by the traditional cell in

Figure 3.3, is to pre-compute the carry and sum for both possible carry in values, before it

arrives. If the cin is 0, the results of the c0 = f0(dataa′, datab) and s0 = f2(dataa′, datab)

LUTs are passed to their respective outputs. Likewise, if cin is 1, the results of the c1 =

f1(dataa′, datab) and s1 = f3(dataa′, datab) LUTs are passed. However, upon further inspec-

tion, the expressions cout = cin · c0 + cin · c1 and sum = cin · s0 + cin · s1 are identical to

that of a 3-input LUTs with inputs {cin, dataa′, datab}. This is an efficient way to compute

arithmetic functions, but limits the outputs cout and sum to 3-input functions. For generic

logic chains it is desirable that the full computing capacity of the native LUT, in this case

4-inputs, be capable of traversing the combout and cout outputs simultaneously.

Allowing the full K-LUT value to be output from a logic cell has a few constraints. First,

there is a limited number of mask bits, and if all of them are used to compute either the

www.manaraa.com

46

Figure 3.3 Traditional carry-select architecture.

www.manaraa.com

47

cout or combout, both ports must output the same result. Such generic chains are referred to

as full-width logic chains. This is a deviation from traditional arithmetic chain logic, which

computes separate K − 1 values for each port. Second, for the sake of legacy tool flows and

design flexibility, regular arithmetic carry-select capability should be preserved. Third, the

impact of simultaneously supporting full and sub-width logic chains should be minimal. This

is to say that the architecture modifications and extra logic should not significantly impact

logic cell delay and area, relative to that of a traditional cell.

Figure 3.4 depicts a carry-select reuse cell inspired partially by the Stratix logic cell charac-

terized by Figure 3.3. Its main contribution is to enable the full K-LUT function computed by

an LE to drive both the routing and chain net outputs simultaneously with the same value. It

performs this without extraneous interconnection between adjacent LEs. The reuse cell allows

the entire function computed by the 4-LUT structure of the LE to traverse the carry chain. It

achieves this through two additional 2:1 multiplexers and a modified LUT mask relative to the

traditional cell. The traditional cell in Figure 3.3 will be used as the point of comparison for

the architecture discussion. Several modifications have been made to the traditional cell that

preserve its functionality and facilitate chain reuse. In the following description, dataa′ will

be used to refer to the output of the XOR gate with inputs dataa and addsub, while x will be

used to denote an ambiguous component or signal.

The mode multiplexer, while depicted as a simple 2:1 multiplexer in Figure 3.4, actually

has a dual output capability, as depicted in Figure 3.5. When in arithmetic mode (memory

bit is set to 0), the multiplexer passes a static logic value on both outputs. The output

destined for multiplexers car0 and car1 is pulled to ground by a pulldown resistor, and the

output destined for multiplexers sum0 and sum1 is pulled high by a pullup resistor. When

in normal mode (memory bit is set to 1), the static outputs are overridden, and datac is

passed to all multiplexers. It has been represented as a 2:1 multiplexer in Figure 3.4 because

it is transistor-neutral relative to a traditional 2:1 pass transistor multiplexer and provides

similar functionality, but is difficult to symbolize in the schematic. The function of the mode

www.manaraa.com

48

Figure 3.4 Chain reuse carry-select architecture.

www.manaraa.com

49

Figure 3.5 Implementation of the mode multiplexer.

multiplexer functionality will be discussed shortly, but is necessary for proper normal and

arithmetic operation.

In arithmetic mode, the traditional cell computes the sum of dataa′ and datab using LUTs

s1 and s0 and the sum multiplexer, whose result is passed through multiplexer 4. The reuse

LE, on the other hand, passes s1 and s0 through a level of multiplexers and instead relies

upon multiplexer 4 to compute the sum. While this is a difference in implementation, it is

functionally equivalent when the mode multiplexer is set in arithmetic mode. Similarly, the

carry computation is performed after allowing the LUT results to pass through multiplexers

car1 and car0. The carry computation is completed once the carry into the cell is available, as

is true in the traditional design.

The additional level of multiplexing in the reuse design institutes a delay on the carry

computation once the general inputs, dataa′ and datab, become available. This, for the most

part, only affects the first cell in a carry chain because it is the only one dependent on the

arrival of general routing inputs. It is assumed that in an synchronous design all general

routing inputs become available roughly at the same time, thus making the delay through the

carry chain the critical path of the circuit. All cells in the chain, with the exception of the

first, have already computed the carry for both cin conditions and propagated those values to

the carry multiplexer to await the arrival of the cin. In short, the sum computation of the

reuse cell should expect identical latency to the traditional, while the carry latency should only

www.manaraa.com

50

Figure 3.6 Mask modes: (a) traditional arithmetic, (b) normal, and (c)
reuse arithmetic, and (d) reuse normal.

differ for the first cell in a chain. The carry function cout = f(dataa′, datab, cin) is preserved

in arithmetic mode.

The normal (Boolean) operating mode of both cells is appreciably different. The mode

multiplexer is set to pass a general routing input datad to multiplexer 4 in the case of

the traditional cell. However, in the reuse cell the mode multiplexer passes datac to the

car0,1 and sum0,1 multiplexers–a slight difference that allows the carry out of a cell to be

cout = f(dataa′, datab, datac, cin) for Boolean non-arithmetic chains. The combout function is

computed similarly in both cell designs, the difference being that the LUT mask is rearranged

in the reuse cell. Because of the need to pass the carry and sum LUT outputs through the

car0,1 and sum0,1 multiplexers, respectively, in arithmetic mode without performing a com-

putation the middle nibbles of the 4-LUT mask are interchanged, as shown in Figure 3.6(d).

This is a small and innocuous change that is easily dealt through input reordering. Figure 3.7

gives the truth table representations of all LE operating modes.

In summary, no extra delays are introduced in the reuse cell for Boolean operations, but

the cout can accommodate a f(dataa′, datab, datac, cin), while the combout can be the same

function as the traditional cell of three general inputs and flexible fourth input from the 4 : 1

multiplexer. The function of the 4 : 1 multiplexer is to allow different inputs to the LUT

structure including an external data input, datax, cin, the register feedback of the cell, regout,

and addsub. This functionality is preserved with the only difference between the two cells

being the value of datax (datad for reuse, datac for traditional).

Circuit layout and simulation results in Table 3.1 indicate that the cout for the initial LE in

www.manaraa.com

51

Figure 3.7 Mask truth tables for the reuse and normal LEs.

Table 3.1 Layout Summary

Mode µmxµm cout0 (ns) coutn−1,1 (ns) combout (ns)
Re 97.95 x 82.35 6.04 3.50 5.94

Trad 97.95 x 79.95 6.01 3.49 5.90
R:T 1.03 1.01 1.00 1.01

a chain, and the combout for all LEs both suffer a 1.01x delay at 3.3v 0.6µm process technology.

The assumption of such a recalibration in timing results is that the same layout techniques,

when applied to each LE, will be an indication of the expected impact on a commercial LE

layout.

Obviously, FPGA vendors use highly optimized LE designs to which the research com-

munity is not privy to, and such a design penalty estimation is necessary to fairly compare

performance results. A caveat of this work is that the layout results obtained are not necessar-

ily representative of commercial LE implementations. The assumptions are that the traditional

and reuse LE designs have been treated equally during layout. In the overall LE layout, area

is dominated by the 20 SRAM configuration bits, D Flip-flop, pass transistor 4-LUT struc-

ture, and output control. However, these components are common to each LE design. In this

context, the two additional 2:1 pass transistor multiplexers of the reuse LE yield a 1.03x area

increase. The 1.03x increase would be further amortized over the entire LE area with the

inclusion of additional configuration bits and additional LUT infrastructure resulting from an

increase in LUT size.

www.manaraa.com

52

3.2 Summary

This chapter presents a novel LE design for carry chain reuse. The reuse LE is shown to

allow a full K-LUT operation to traverse the existing carry chain as well as support traditional

K − 1 operation. These functions are respectively known as full (K) and sub-width (K − 1)

operation modes. The reuse LE has little impact on delay and area, a property that is further

reinforced when increasing LUT sizes are considered. Increasing K-LUT size only serves to

increase the number of configuration bits and the size of the LUT computation structure.

Increasing the area of all other LE constituents allows the area penalty imposed by the reuse

cell, two pass transistor multiplexers, to be amortized over a larger area. Thus, the reuse

cell becomes an even more attractive design choice as LE capability increases and a valuable

architectural modification for generic logic chains.

www.manaraa.com

53

CHAPTER 4. CASE STUDY: POST-TECHNOLOGY MAP

HEURISTICS

Carry chains in reconfigurable fabrics serve a very important, yet very specific purpose: to

facilitate the efficient implementation of arithmetic functions. Carry chains allow arithmetic

functions to bypass the performance-costly general routing array. However, if a carry chain

isn’t used for an arithmetic function, it becomes a superfluous adjacent cell interconnection

resource. There are several challenges to carry chain reuse for non-arithmetic chains, some

architectural, while others are based on tool support.

The architectural obstacles have resolved by the novel reuse architecture presented in Chap-

ter 3, through the availability of other architectures supporting logic chains, and the ability

to use sub-with (K − 1) chains available from carry-select arithmetic. Yet, these logic chain

structures are useless unless a CAD tool can efficiently implement them. Current software

packages identify arithmetic carry chains through high-level HDL macros and primitives. The

LUT chain is mapped by Quartus II during PNR according to undisclosed metrics. The only

recourse for a designer wanting logic chains is to create them with low level primitives or hand

modify the design. The most common academic synthesis tools, SIS [66] and ABC [59] do not

support arithmetic chains in their internal representation.

This chapter presents an initial foray into logic chain formation, post-technology map

experiments on the formation of chains, and demonstrates how they can benefit an architecture

[36]. To do this, a simple probability model of chain formation is created that works without

modifying HDL-created chains or a technology mapped design. The only changes made to the

netlist are the replacement of eligible general routing nets with high-speed chain connections.

The results and discussion will justify the generalization of arithmetic chains to generic logic

www.manaraa.com

54

chains, and guide their definition and mapping in Chapter 5 [38]. As a caveat, the design

characteristics in Chapter 4 will differ from Chapter 5 as different design flow tools are used,

i.e. Quartus II vs. SIS/T-VPack/VPR.

4.1 Post-Technology Map Experiments

Altera’s Quartus II design tool integrates all aspects of the reconfigurable fabric design

flow. It performs synthesis, technology mapping, clustering, and PNR using its own set of

tools, but through the Quartus University Interface Program [55] allows academic tools to be

substituted for any part of the flow. Academic tools can be tested using commercially available

hardware and mesh with a commercial CAD flow.

Quartus produces a post-technology mapped design file in Verilog Quartus Module (VQM)

format, which can be modified and used as input to the PNR engine. This allows the Stratix

architecture to be used to estimate the impact of reuse in “black-box” style, i.e. the LEs are

assumed to use the reuse cell presented in Chapter 3. A VQM parser has been developed to

input a technology mapped design, identify opportunities for reuse, and make the appropriate

modifications to the design. The appropriate modifications are, in accordance to a particular

algorithm, to remap a net from the combout to the cout of the source cell, and to remap

the general datax input of the sink cell to the cin. No other connectivity alterations are

incorporated. The result is a design whose logical interconnection and logic cell utilization

have not been altered in an effort to ascertain the effect reuse has on application speed and

routing resource utilization. The modified VQM file is admittedly not a functioning design, but

will serve for experimental purposes. It is not fully functional because the internal cell design is

that of the traditional cell, not the reuse cell. Use of a commercial architecture and tools, while

having the advantage of providing a reasonable estimate of real-world performance, also carries

with it the specialized architectural features and tool optimization techniques that conflict with

the experimental cell design. In the case of chain reuse, the following considerations must be

made:

1. The cell design is assumed to be the modified cell design presented in Chapter 3.

www.manaraa.com

55

2. Timing analysis must incorporate the delay introduced by the modified cell design, ac-

cording to Table 3.1.

3. Stratix LEs feature an LUT chain providing similar connectivity to the reusable carry

chain.

4. PNR technology map optimization is disabled by setting the TRUE WYSIWYG FLOW

option to “ON”.

The first two considerations have been dealt with in Chapter 3 through assessing penalties

pursuant to the differences observed between cell layouts. Because the difference in area cannot

be accounted for reliably, commercial power estimation of the reuse designs is infeasible. The

third item indicates that the LUT chain structure can implement some of the same connections

as a non-arithmetic carry chain, and can’t be disabled in the PNR engine. It will be shown that

this architectural feature can be omitted when reuse cells are used. Finally, the PNR engine

performs additional technology map optimization such as the trimming of inputs unused by

the LUT mask. These optimizations have been disabled in both traditional and reuse designs

to ensure that the cells are implemented exactly as desired.

Using black-box estimation, reuse opportunities are discovered and exploited. Four sepa-

rate algorithms will be applied to reuse. A valid parent is a cell whose cout port is free, and

whose combout is in an exclusive relationship with the data input of a child cell, i.e. the child

is the only sink of the parent. A valid child is defined as a cell who possesses at least one data

input that is in an exclusive relationship with a parent’s combout port and whose cin port is

free. The following definitions are used:

• L - The length of the chain in terms of number of cells.

• Si - Child cell i where 1 ≤ i ≤ L− 1

• Pj - Parent cell j where 1 ≤ j ≤ L− 1

• R - Correlation, i.e. the probability that cell pair Si and Pj , where j = i + 1, would be placed

adjacent to each other by the PNR engine.

• Rth - The minimum threshold correlation that cells Si and Pj must have to form a chain.

www.manaraa.com

56

• x - An exponent used to compute Rth in Equation 4.5.

• N - The set of nets in the netlist.

• C - The set of cells in the netlist.

A valid chain can be formed between Si and Pj if i = j and R ≥ Rth. To form chains that

aren’t exceedingly naive, correlation (R) is established as the likelihood that two cells would

be clustered by PNR regardless of carry chain constraints. A net is incident on a cell if one of

Ck’s I/O ports is connected to Na. Probability of incidence is defined in Equation 4.1 as the

degree of net Na, i.e. the number of cells it is incident on, divided by the total nets, |N |.

Pr(Na incident on Ck) =
deg(Na)
|N |

(4.1)

The probability that two cells, Ci and Cj , would be clustered together without the influence

of the carry chain is assumed to be dependent on the intersection of their nets NCi ∩ NCj ,

referred to as attraction in [12]. For each cell the probability that each of their sets of nets

would occur in the netlist at random are given by Equations 4.3 and 4.4. Thus, the probability

that these two cells would be placed together is the product of their probabilities of occurrence,

Pr(NCi) and Pr(NCj). This yields the correlation, Equation 4.4, which is the probability that

all the nets incident on the pair of adjacent cells, Ci and Cj , would occur in the netlist at

random.

Pr(NCi) =
|NCi |∏
y=1

Pr(Ny incident on Ci) (4.2)

Pr(NCj) =

|NCj |∏
z=1

Pr(Nz incident on Cj) (4.3)

Rij = Pr(NCi) · Pr(NCj) (4.4)

Rth is defined in Equation 4.5 as a small net estimator. Here, s is a constant that is much

less than the sum of the net degrees, s �
∑|N |

a=1 deg(Na) divided by the number of cells |C|.

This limits the number of cells that have many small degree nets. The degree of a net deg(Na)

divided by |C| yields a density function for net Na. However, the goal of correlating cells i

www.manaraa.com

57

and j with Rij is to cluster cells with a high probability that the PNR engine will cluster

them. Cells with many small degree nets incident on them, e.g. datax inputs, represent a high

unlikelihood that this will occur, while nets with higher degree, such as clocks and register

enables, will give a greater likelihood. By taking the density function to the power x, e.g. the

number of cells in the cluster, the number of small nets incident on a cluster of cells is limited

when Rth is used as a minimum bound on Rij . Because cells Ci and Cj have a total of 8

potentially small fanout nets incident on them (the total number of datax inputs), x is on the

range 7 ≤ x ≤ 10.

Rth =
(
s

|C|

)x

(4.5)

Four algorithms have been designed to test chain reuse as a component of the design flow.

Each iteratively selects cells that are valid children but not valid parents and extends the chain

from output to input until a stop condition is met. Figure 4.1 shows all possible chains formed

by the LONG, SHORT, and SHORTm algorithms. The chains attributed to the THRESHx

algorithms are just some of the possible chains formed. The algorithms perform as follows:

• LONG - Stops once a child is found not to have a parent. If Si has multiple parents, the

one with the best correlation to Si is chosen, and extension continues.

• SHORT - Stops once a child cell is found not to have a parent or has multiple parents.

• SHORTm - It may happen in SHORT that S1 has multiple parents, thus fulfilling the

stop condition and yielding no chain (L = 1). In this situation SHORTm chooses the

parent with the highest correlation and then stops, yielding a minimum chain (L = 2).

• THRESHx - A depth first search tree is formed rooted at S1. All child/parent pairs are

given a correlation score R. Only pairs whose R ≥ Rth form chains.

Each design has had its VQM technology map generated by Quartus II and had reuse

applied using an algorithm. For the THRESHx algorithm, 7 ≤ x ≤ 10 pursuant to Equation

4.5. The resultant designs are input to the Quartus PNR engine and timing analyzer. Timing

has been recalibrated to account for the delay introduced by the modified cell design (Table 3.1).

www.manaraa.com

58

Figure 4.1 DFS tree from output to input.

Table 4.1 Reuse Summary

Balanced Speed-up and Utilization Ratio Results using Quartus II
Design LEs Nets Algo Chains

∑
i Li Ave L% A % R % A+R SU U

aes128 fast 9823 10197 THRESH9 2632 5917 2.24 0.0 60.2 60.2 1.14 0.96
cfft 3044 6389 SHORT 20 42 2.1 57.6 1.4 59.0 1.03 0.95
des3 16400 16645 LONG 1921 4130 2.15 0.1 25.2 25.3 1.47 0.91
dlx 16268 21306 SHORT 2722 7245 2.66 9.2 44.5 53.7 1.34 0.99

eth top 375 498 THRESH7 8 16 2.0 9.1 4.3 13.4 1.07 0.92
jpeg encoder 4726 11569 THRESH7 4 8 2.0 36.3 0.17 36.4 1.04 0.99
RSACypher 1073 1662 THRESH7 5 10 2.00 25.0 0.9 25.9 1.02 0.89

sha512 4777 8219 THRESH9 684 1464 2.14 24.4 30.6 55.0 1.13 0.92
usb 3234 3659 SHORT 377 868 2.30 8.8 26.8 35.6 1.11 0.96

Reuse effectiveness is judged using the maximum clock frequency and routing utilization. The

ratio of the reuse design to the traditional design is presented, where values greater than 1 are

desirable for speedup (SU) and values less than 1 for routing utilization (U). Table 4.1 shows

the algorithm achieving the best simultaneous delay and utilization improvement. It presents

the total LEs and nets, best performing algorithm, total chains, total cells in chains (
∑

i Li),

average chain length, percent of arithmetic cells (%A), percent of reuse cells (%R), the percent

of cells in chains (%A+%R), and the SU and U relative to normal design flow. For almost all

cases, at least one algorithm improves both SU and U , and in all cases an algorithm improves

either SU or U , although sometimes at the cost of the other.

Figure 4.2 presents the speedup achieved by reuse for all designs and algorithms. Figure 4.2

www.manaraa.com

59

and Table 4.1 indicate that speedup is highly dependent on the algorithm and application com-

bination, with performance between 1.02-1.47x for at least one algorithm per design. LONG

tends to create longer chains which harm smaller or more heavily arithmetic-dominated de-

signs. However, it exhibits the highest speedup for any algorithm/design combination at 1.47x

for DES3 due to prevalence of opportunity and ability to create longer chains. The SHORT

and SHORTm algorithms produce mixed results, but also tend to create a large number of

chains, thus performing better on bigger designs. Curiously, the average chain length is always

2 < L < 3. The reason is that the best performing algorithm is the one that uses the most

chains on the critical path, but also the one that allows the PNR engine the most options. Al-

lowing the PNR to choose where it would like cells to be placed ultimately reduces the routing

complexity and the average delay of a routing connection.

The THRESHx algorithms selectively choose pairs based upon the likelihood that such

cells would be clustered together by the PNR engine. For this reason, the smaller designs tend

to benefit from higher threshold values (x = {7, 8}), mitigating the number of chains created

and consequently the number of constraints on PNR. This general trend is seen throughout the

results–for larger, more random-logic designs (DES3, DLX), the ability to increase performance

is highly dependent on the ability to replace routing on the critical path with carry chains, or to

change the critical path. Conversely, for smaller or more arithmetic designs (RSA, CFFT), the

ability to increase performance is highly contingent on decreasing the overall routing utilization

of the design (to be discussed in Figure 4.4).

To ascertain the effect carry chain reuse has on overall interconnection array utilization,

the resources of the Stratix architecture must be described. Each LAB is a set of 10 LEs

featuring 30 general local routing interconnect lines which service intra-LAB routing between

LEs and provide for signals to be sourced/sank to/from the global routing array. Every LE

is connected to the downstream LE on the carry chain, the register cascade, and LUT chains

(the register cascade is shifting structure, not subject to the discussion of routing utilization).

The global routing array provides connectivity between LABs in column spans of 1, 4, 8, and

16 LABs, and row spans of 1, 4, 8, and 24 LABs.

www.manaraa.com

60

Figure 4.2 Speed-up of Reuse over Unmodified Flow vs. Algorithm

Figure 4.3 shows how reuse effects each individual routing resource (in order: c16, c4,

c8, direct, lut chain, local, r24, r4, r8), where a ratio greater than 1 signifies a reuse design

consuming more resources than its corresponding normal design. Both local routing resources

(intra-LAB local routing and LUT chains) witness substantial average decreases on the order

of 30-60%. For LUT chains, this means that they are potentially superflous to the architecture,

as their functionality is essentially replaced by the carry chain. Additionally, local intra-LAB

routing provisioning could possibly be decreased from 30 general purpose wires to 20-25 due

to connection migration to the carry chain. However, the effective clustering of cells along

the carry chain has come with the effect of increasing some of the other routing compoments.

For the LONG and SHORT algorithms, global routing resources are increased quite often.

However, when THRESHx is applied routing resource decreases can be seen for at least one

threshold/design pair given proper selection of x because chained cells are in higher accordance

with PNR decisions.

A simple cost metric has been developed to measure the cumulative effect on intercon-

nection utilization. The columnar and local routing structures run parallel to the carry chain

www.manaraa.com

61

Figure 4.3 Average Ratio of Reuse to Unmodified Utilization vs. Intercon-
nect Resource

and row structures run orthogonal to the chain as well as to the layout of LEs. Equation 4.9

gives the total routing cost as the summation of the weighted constituent routing structures.

The length of an LE is used as 1 unit of wire length, and accordingly each column structure

spanning 4 rows (C4) is assessed a cost of 40 units. However, using specifications and Quartus

tools, each row routing structure is deemed to be approximately half the size of its column

counterpart because it does not have to span the entire length of a LAB. Thus, each 8-column

row structure (R8) spans 40 units, and so forth. LUT chains, because they are adjacent LE

structures, are given a weight of half a unit. Local intra-LAB wires are given a cost of 10

units, as are direct connections between LABs (as they still must cross LABs and other wires

in both vertical and horizontal directions). The goal of this metric is not to express delay, but

to characterize the interconnection utilization of a given design.

www.manaraa.com

62

Figure 4.4 Ratio of Reuse Utilization to Unmodified Utilization vs. Algo-
rithm

Ucol = 160 · C16 + 80 · C8 + 40 · C4 + 10 · C1 (4.6)

Urow = 80 ·R24 + 40 ·R8 + 20 ·R4 + 10 ·R1 (4.7)

Ulcl = 0.5 · LUTchain + 10 · Local (4.8)

Utot = Ucol + Urow + Ulcl (4.9)

Figure 4.4 shows the weighted interconnection utilization ratios per algorithm. As expected,

the the overall change in utilization is dictated by global routing changes. In smaller designs,

more constraints on the PNR engine lead to higher routing utilization. The THRESHx suite of

algorithms limit the number of reuse chains that are formed by only allowing only those chains

that are likely to be agreed upon by the router. Routing savings of up to 13% are observed by

selecting the proper threshold with each design exhibiting utilization savings for at least one

algorithm.

www.manaraa.com

63

4.2 Summary

The post-technology map experiments with naive algorithms show that arithmetic carry

chain reuse in FPGAs can offer benefits to non-arithmetic operations. Speedup and routing

utilization results indicate that each design can benefit from the application of at least one

algorithm. A design/algorithm pair can be found that can potentially increase maximum clock

frequency, with an observed maximum of 1.47x, and decrease routing consumption, with an

observed minimum of 0.87x, for the presented designs.

While some algorithms often simultaneously increase performance and decrease routing

utilization, others may do quite the opposite. The selection of the appropriate algorithm

depends on the characteristics exhibited by the design, such as number of arithmetic chain

cells, number of cells in the design, the average fanout of each net, as well as the desired

performance of the designer. One of the most important findings of the experiment is that

forming every possible chain is not necessarily a good policy. Larger, less arithmetic designs

(DES3) may be able to accommodate a large increase in the number of chains, but smaller,

more arithmetic designs (RSA) have already reached “saturation.”

One reason for performance decrease is that long chains restrict the PNR engine. When the

average chain length is small, 2 < L < 3, performance increases most because it allows the PNR

engine the most options. Allowing the PNR to choose where it would like cells to be placed

ultimately reduces the routing complexity and the average delay of a routing connection. The

post-technology map experiments with naive algorithms show chain reuse has great potential,

however valuable information is lost during technology mapping that could lead to even more

efficiency. The observations of this case study will guide the creation of the optimal mapping

algorithm of Chapter 5.

www.manaraa.com

64

CHAPTER 5. OPTIMAL LOGIC CHAIN TECHNOLOGY MAPPING

As Chapter 4 discovered, non-arithmetic chains have the potential to greatly affect the

performance of any given design. However, their assignment must be done with care, because

it has also been shown that overuse of chains can decrease performance. In short, not every

chain is a good chain. Additionally, opportunities for chain reuse are limited in designs already

possessing high numbers of arithmetic chains. Of the suite of techniques outlined in Chap-

ter 4, none consistently yields favorable solutions, an indication that a more exact solution is

needed to fully harness the potential of chains. It is especially important chains be addressed

during technology mapping, instead of as an afterthought, otherwise valuable opportunities

are obfuscated by the packing of Boolean nodes into K-LUTs.

Finding logic chains in a design is contingent on a definition of a chain that encompasses

both arithmetic and non-arithmetic logic. A generic logic chain can be defined as a set of

consecutive nodes, such that each increases the logic depth of the design without increasing its

general routing depth. The delay of a chain net will be considered 0ps, due to the emphasis

placed on chain efficiency during architecture design and layout. Chains have the constraint

that a LE chain output is limited to a single LE fanout (although it is a dual fanout between

LUTs), and that each LE is limited to a single chain input. With the advent of the architecture

described in Chapter 3, no distinction will be made between arithmetic and non-arithmetic

chains henceforth. Optimal logic chain creation occurs when the minimum general routing

depth of a design is achieved. Consequently, logic depth is traded for routing depth, and HDL

macros are disregarded during mapping.

www.manaraa.com

65

5.1 Problem Formulation and Definitions

The optimal routing depth technology map solution described by ChainMap is partially

based on the optimal logic depth FlowMap [20], and is formulated similarly for ease of compar-

ison. SIS [66] nomenclature is used to describe an arbitrary Boolean network. Such a network

can be represented as a directed acyclic graph (DAG) N = (V,E) with vertices V and edges

E, where n = |V | and m = |E|. Each Boolean gate in the network is represented as a node,

and edge(u, v) connects nodes u, v ∈ V if there exists a net from the output of gate u to an

input of gate v. Notation is abused such that u ∈ N implies that u ∈ V and edge(u, v) ∈ N

implies edge(u, v) ∈ E for N = (V,E). A predecessor is defined as a node u such that there

exists a directed path from u to v for u, v ∈ N . Likewise, a descendant is a node v such that

there exists a directed path from u to v for u, v ∈ N . PIs have no incoming edges and POs

have none outgoing. The following definitions will be used in the description of ChainMap:

• u, v, w, x are general nodes in a graph

• PI(N) and PO(N) refer to the set of primary inputs or outputs of N , respectively

• i, j are scalar indices used with nodes

• s is an auxiliary global source node, s.t. ∀v ∈ PI(N), edge(s, v) is added

• t denotes a sink node, and Nt is a subgraph of N containing node t and its predecessor

nodes and edges

• s denotes a source node, and Ns is a subgraph of N containing node s and its descendant

nodes and edges

• d is a depth increasing node

• g(v) is the routing label and l(v) the logic label for v

• p is a scalar s.t. p = max{g(u) : u ∈ N}

• q is a scalar s.t. q = max{l(u) : u ∈ N}

• P ⊆ Nt s.t. v ∈ P if g(v) = p,∀v ∈ Nt

• Pd ⊆ P consisting of d and its predecessors in P

• N ′t is a DAG with a valid depth increasing node

www.manaraa.com

66

• N ′′t is derived from N ′t to apply Max-flow Min-cut

• d′ ∈ N ′t is formed by collapsing the nodes in Pd into d

• t′ ∈ N ′t is formed by collapsing the nodes in Pd into t

• (X,X), (Y, Y),(Z,Z) denote node cuts in a network, e.g. nodes are partitioned so that

s ∈ X and t ∈ X

• input(H) for a set H ⊆ N , is the set of {u : ∀u /∈ H, v ∈ H,∃edge(u, v)}, and is also

abused for nodes

• output(H) for a set H ⊆ N , is the set of {u : ∀u ∈ H, v /∈ H,∃edge(u, v)}, and is also

abused for nodes

• cap(u, v) denotes the flow capacity of edge(u, v)

• LUT (t) is the set of nodes in the K-LUT of t

Through abuse of notation, a node or set denoted as “prime” indicates to which network

it belongs. For example, (X ′, X ′) is a cut belonging to network N ′t . A K-feasible cone Nv is a

subgraph of N containing v and each of its predecessors such that input(Nv) ≤ K. The goal is

to cover K-bounded N , where ∀v∈V |input(v)| ≤ K, with K-feasible cones for implementation

in a K-LUT FPGA.

The level of t is the longest path from any PI predecessor of {u : u ∈ PI(Nt), u 6= t} to

t, with PIs possessing a level of 0. The distinction that ChainMap makes from FlowMap is

that level is in terms of the maximum number of routing connections traversed from PI(Nt)

to t. Chain connections do not count as a routing level increase, therefore, if the longest path

between a PI and node t traverses g general routing connections and c chain connections,

level(t) = g. The depth of the network is the maximum level of all its vertices.

As in FlowMap, the concept of a network cut, (X,X), is pivotal. The node cut size, given

by Equation 5.1, quantifies the size of input(X), i.e. the number of nodes that have a forward

edge crossing the cut. To find the K-feasible node cut, the edge cut size will be employed,

according to Equation 5.2. For the remainder of the algorithm discussion a unit delay model

is incorporated, meaning that cap(u, v) = 1,∀u, v ∈ V . The logic height of the cut is the

www.manaraa.com

67

maximum node label in X, as in Equation 5.3. The routing height of the cut is the maximum

node label in X, as in Equation 5.4.

n(X,X) = |{u : edge(u, v) ∈ N, u ∈ X v ∈ X}| (5.1)

e(X,X) =
∑

u∈X,v∈X

cap(u, v) (5.2)

hL(X,X) = max{l(u) : u ∈ X} (5.3)

hG(X,X) = max{g(u) : u ∈ X} (5.4)

The primary objective is to minimize the network routing delay by minimizing hG(X,X)

for all nodes. Using a binary depth model, each routing net increases routing depth by 1,

but it is not increased by any chain net. The secondary objective is to minimize the logic

delay of the network by minimizing hL(X,X) for all nodes such that hG(X,X) is minimum,

because network delay is also defined by the delay through its K-LUTs. A third objective is to

minimize the area of the design in terms of the number of K-LUTs required by the solution.

A solution is optimal if the network routing depth is minimum and the logic depth, within the

confines of minimum routing depth, is also minimum.

ChainMap consists of three phases: labeling, mapping, and duplication, with an optional

fourth, relaxation. In the labeling phase, ChainMap identifies whether or not a DAG can be

constructed that consists of a given node t and its predecessors, and contains a depth increasing

node d. If such a DAG is possible, two subsequent graph transformations are applied that

isolate d in N ′t and convert the network to N ′′t , one to which Max-flow Min-cut can be applied.

If a K-feasible cut can be found, then t does not increase the routing depth of the design. If

t = d, this is akin to the minimum height logic cut identified by FlowMap, and contains all

other possible cuts. The second phase of ChainMap is identical to that of FlowMap, wherein

the K-feasible cuts computed during labeling are used to form K-LUTs. The third phase

www.manaraa.com

68

Figure 5.1 Transformation from Boolean network Nt to DAGs N ′t and N ′′t
for chain cut.

of ChainMap is to duplicate nodes that source multiple chain nets to adhere to the special

constraints imposed by chains. An optional relaxation phase can be applied to restrict the

number of duplications required.

5.2 ChainMap Labeling

ChainMap correlates g(v) to the general routing depth of node v. This is a subtle change

in definition from FlowMap, which uses l(v) to indicate both logic and routing depth because

it considers all nets to be routing connections. The introduction of the logic chain provides for

a net with properties different from general routing. A chain net allows any u ∈ input(v) to

cause l(v) = l(u) + 1 while allowing for the possibility that g(v) = g(u).

The labeling phase is performed on a topological ordering of the nodes in N , ensuring that

node u ∈ input(v) is processed before v. N is K-bounded, meaning input(u) ≤ K,∀u ∈ N .

Each u ∈ PI(N) has g(u) = l(u) = 0. Figure 5.1(a) shows an example Nt where all edges

traversing to u /∈ Nt have been pared away, and the auxiliary source s added.

If LUT (t) denotes the set of nodes in the K-LUT which implements t, then X = LUT (t)

and X = Nt − LUT (t). Given X and X, a K-feasible cut (X,X) is formed such that s ∈ X

www.manaraa.com

69

and t ∈ X and n(X,X) ≤ K. A depth increasing node is one which is solely responsible for

increasing the routing depth of LUT (t).

Definition 5.2.1. Let node d ∈ input(X) be a node with maximum label g(d) = p. If g(d) >

g(v),∀v ∈ input(X), v 6= d, then d is depth increasing.

Let u ∈ X be a node with p = g(u) and d be a depth increasing node, then the routing

label of t is g(t) = p if d ∈ X and g(t) = g(u) + 1 otherwise. Equation 5.4 indicates that to

minimize the hG(X,X) of LUT (t), the minimum height K-feasible cut (X,X) must be found

in Nt.

Lemma 5.2.2. The minimum routing depth solution of Nt is given by:

g(t) = min
K−feasible (X,X)

hG(X,X) +

 0 if d ∈ X

1 otherwise

Let v ∈ X be the maximum logic label q = l(v), then l(t) = l(v) + 1. The logic label of t

is dependent on the K-feasible minimum height routing cut (X,X). Because the nodes in X

and X represent nodes in different LUTs, logic depth simply increases at each routing cut.

Lemma 5.2.3. The logic depth of Nt is given by:

l(t) = hL(X,X) + 1

Furthermore, for any t, g(t) ≥ g(u) and l(t) ≥ l(u), ∀u ∈ input(t). This is impor-

tant because the value g(t) has two possibilities: if a minimum height cut can be found at

hG(X,X) = p − 1 or hG(X,X) = p, d ∈ X then g(t) = p, otherwise g(t) = p + 1. Likewise,

the logic label of t follows a similar derivation and its proof is identical to that presented by

Lemma 2 in FlowMap [20]. For purposes of discussion, this proof is excerpted as Lemma 5.2.5.

Lemmas 5.2.4 and 5.2.5 ensure that the routing and logic labels of each node are greater than

or equal to any of their predecessors.

Lemma 5.2.4. If p is the maximum routing label of the nodes in input(t), then g(t) = p or

g(t) = p+ 1 .

www.manaraa.com

70

Proof. If u ∈ input(t), then any cut (X,X) ∈ Nt results in either u ∈ X or u ∈ X.

When u ∈ X, Equation 5.4 requires that hG(X,X) ≥ g(u) and by Lemma 5.2.2 g(t) ≥

hG(X,X), therefore, g(t) ≥ g(u).

When u ∈ X, the K-feasible cut (X,X) defines a K-feasible cut (Y, Y) in Nu, where

Y = X ∩ Nu and Y = X ∩ Nu. Let (Z,Z) be the minimum height K-feasible cut computed

for Nu. Since (Z,Z) is the minimum height cut, then hG(Y, Y) ≥ hG(Z,Z) because Z ⊆ Y .

Likewise, since Y ⊆ X, hG(X,X) ≥ hG(Y, Y), therefore, hG(X,X) ≥ hG(Z,Z). There are

two possible values for both g(t) and g(u) according to Lemma 5.2.2, resulting in four possible

cases. Figure 5.2(a) applies to i and ii, while (b) applies to iii and iv.

(i) If g(t) = hG(X,X) + 1, g(u) = hG(Z,Z), then g(t) > hG(X,X) ≥ hG(Z,Z) = g(u), thus

g(t) > g(u).

(ii) If g(t) = hG(X,X) + 1, g(u) = hG(Z,Z) + 1, then g(t) − 1 = hG(X,X) ≥ hG(Z,Z) =

g(u)− 1, thus g(t) ≥ g(u).

(iii) If g(t) = hG(X,X), g(u) = hG(Z,Z),then g(t) = hG(X,X) ≥ hG(Z,Z) = g(u), thus

g(t) ≥ g(u).

(iv) If g(t) = hG(X,X), g(u) = hG(Z,Z) + 1, then d ∈ X. By Definition 5.2.1, g(d) >

g(v),∀v ∈ input(X), v 6= d. If d /∈ Y then all of Y is less than g(d), and g(t) =

hG(X,X) = g(d) > hG(Y, Y) ≥ hG(Z,Z) = g(u) − 1, thus g(t) ≥ g(u). If d ∈ Y ,

Figure 5.2(c), then g(t) = hG(X,X) = hG(Y, Y) = g(d). Because d is a depth increasing

node of t, and input(Y) ⊆ input(X) then d is also a depth increasing node of u, but it is

known that g(u) = hG(Z,Z)+1, which by Lemma 5.2.2 indicates d /∈ Z, implying d ∈ Z.

Since d ∈ Z, then hG(Z,Z) = g(d) − 1. Therefore, g(t) = g(d) = hG(Z,Z) + 1 = g(u),

thus g(t) = g(u).

A valid alternative K-feasible cut is when (Nt−{t}, {t}) because N is K-bounded. In this

situation, any node u ∈ Nt−{t} is either u ∈ input(t) or a predecessor of those nodes, such that

u ∈ Nt− input(t)−{t}. Therefore, the maximum routing label, g(u) = p, where u ∈ Nt−{t},

and hG(Nt−{t}, {t}) = p, resulting in g(t) ≤ p+1. Items i-iv prove g(t) ≥ g(u), ∀u ∈ input(t),

thus p ≤ g(t) ≤ p+ 1.

www.manaraa.com

71

(a) d /∈ Nu, g(t) = hG(X,X) + 1 (b) d /∈ Nu, g(t) = hG(X,X) (c) d ∈ Nu, g(t) = hG(X,X)

Figure 5.2 Conceptual network cuts.

Lemma 5.2.5. If q is the maximum logic label of the nodes in input(t), then l(t) = q or

l(t) = q + 1.

Proof. If u ∈ input(t), then any cut (X,X) ∈ Nt results in either u ∈ X or u ∈ X.

When u ∈ X, Equation 5.3 requires that hL(X,X) ≥ l(u) and by Lemma 5.2.3 l(t) ≥

hL(X,X), therefore, l(t) ≥ l(u).

When u ∈ X, (X,X) defines a cut (Y, Y) in Nu, where Y = X ∩ Nu and Y = X ∩ Nu.

Therefore, hL(X,X) ≥ hL(Y, Y) because Y ∈ X indicating that l(u) ≤ hL(Y, Y) ≤ hL(X,X) ≤

l(t). Therefore all predecessors of u ∈ Nt − {t} are l(u) ≤ l(t). This implies that l(u) ≤

l(t),∀u ∈ input(t), resulting in l(t) ≥ q.

A valid alternative K-feasible cut is (Nt − {t}, {t}) because N is K-bounded. In this

situation, any u ∈ Nt − {t} is either u ∈ input(t) or a predecessor of those nodes, such that

u ∈ Nt − input(t) − {t}. Therefore, the maximum logic label, l(u) = q, where u ∈ Nt − {t},

and hL(Nt − {t}, {t}) = q, resulting in l(t) ≤ q + 1. Therefore, q ≤ l(t) ≤ q + 1.

Lemma 5.2.4 dictates minimum routing depth is achieved if g(t) = p, either by a depth

increasing node d, or by g(u) = p − 1, ∀u ∈ Nt − LUT (t). Each v ∈ Nt for which g(v) = p

or v = t belongs to set P and is an eligible depth increasing node. To see if any d ∈ P is

depth increasing, P must be partitioned into Pd and Pd, as in Figure 5.1(a). For any d ∈ P ,

a depth first search (DFS), toward PIs rooted at d and in P , yields Pd and Pd = P − Pd.

Figure 5.1(a) shows Pd = {d, a}, which constitutes a logic chain at level p, and Pd = {t, b},

constituting LUT (t). If Pd 6= ∅, t ∈ Pd and consists of nodes potentially included in LUT (t),

www.manaraa.com

72

and its contents collapsed into t to form t′. If d = t, Pd = ∅ indicating that LUT (t) includes

all of the nodes in P (as P = Pd), and the contents of P are collapsed into t to form t′.

Lemma 5.2.6. Let set P contain {v : v ∈ Nt, g(v) = p} ∪ {t}. For d ∈ P , let Pd be the DFS

tree rooted at d and in P , and Pd = P − Pd. N ′t contains a depth increasing node d if there

exists no edge(u, v), where u ∈ Pd − {d} and v ∈ Pd.

Proof. If d = t, then Pd = ∅ and t′ is formed by collapsing P . Here, because t is not a

predecessor of any node yet labeled in N it is assumed to be the depth increasing node of its

unknown descendant until proven otherwise.

When d 6= t, t′ is created by collapsing the nodes in Pd. The lack of an edge connecting

any node in Pd − {d} to any in Pd indicates that g(u) < p,∀u ∈ input(t′), u 6= d. Using proof

by contradiction, assume d is a valid depth increasing node and that there exists edge(u, v),

where u ∈ Pd−{d} and v ∈ Pd. It is known g(d) = p and d 6= u, implying g(u) ≥ p. Therefore,

(Nt − Pd, Pd) defines a cut where u, d ∈ input(Pd) and g(u) = g(d) = p. By Definition 5.2.1,

d is not a valid depth increasing node because ∃edge(u, v) ∈ Nt where d 6= u, which is a

contradiction.

The presence of a valid d ∈ Nt can be ensured, however, it does not guarantee that it can

be identified correctly. N ′t does not guarantee that a K-feasible cut, if it exists, will not divide

Pd and result in an invalid routing cut (X,X) s.t. g(u) = g(v), ∀u, v ∈ input(X), u 6= v, d ∈ X.

The solution is to collapse all of the nodes of Pd into d′, as in Figure 5.1(b), thereby creating

N ′t with d′ as the lone predecessor node of t′ with g(d′) = p when d 6= t, and d′ = t′ when

d = t. As there may be more than one valid depth increasing node, all d ∈ P must be tested

as a valid depth increasing node and for K-feasible cut. Using Lemma 5.2.5, the logic label

can be used to select the d that produces minimum hL(X,X).

Any Nt that does not contain a d is deemed invalid and is eliminated from consideration.

The case when d = t implies that g(t) = p and t is regarded as the first cell in a chain. If a

valid N ′t is formed, and a K-feasible cut is found in it, a corresponding K-feasible cut can be

found in Nt.

www.manaraa.com

73

Lemma 5.2.7. Given a valid N ′t with d′, Nt has a p − 1 height K-feasible routing cut when

d ∈ X and p when d ∈ X if and only if N ′t has a K-feasible routing cut.

Proof. Let T denote the set of nodes in Nt that are collapsed into t′ and D denote the set of

nodes in Nt that are collapsed into d′.

If d′ ∈ X ′ or d′ = t′, then X = (X ′−{d′, t′})∪D∪T and X = X ′. Accordingly, (X,X) is a

K-feasible cut of Nt because input({d′, t′}) = input(D ∪ T). Consequently, hG(X,X) ≤ p− 1

because X ′ = X does not contain any node with routing label p or higher, as all such nodes are

located in (D ∪ T) ⊆ X. According to Lemma 5.2.4, g(t) ≥ p implies that hG(X,X) ≥ p− 1.

Since p− 1 ≤ hG(X,X) ≤ p− 1, then hG(X,X) = p− 1.

If d′ ∈ X ′, then X = (X ′ − {t′}) ∪ T and X = (X ′ − {d′}) ∪D. Accordingly, (X,X) is a

K-feasible cut of Nt because input(t′) = input(T). Lemma 5.2.6 yields hG(X,X) = p because

g(d) = p and d ∈ X. Furthermore, Lemma 5.2.6 indicates g(u) < p,∀u ∈ input(X), u 6= d.

Using a valid N ′t with d′, the flow residual graph N ′′t is constructed. The node cut-size

problem is transformed to an edge cut-size problem by splitting each node, allowing the use

of the Max-flow Min-cut algorithm. For {v : v ∈ N ′′t , v 6= s, v 6= t′}, replace {v} with

{v1, v2} connected by bridging edge(v1, v2) with cap(v1, v2) = 1, input(v1) = input(v), and

output(v2) = output(v). Give all non-bridging edges infinite capacity. The result is flow resid-

ual graph N ′′t , to which the Max-flow Min-cut algorithm can be applied to determine if there

is a K-feasible cut, and therefore a corresponding cut in N ′t [32]. This technique is exactly the

same as that used in Lemma 4 of FlowMap [20] and is summarized in Lemma 5.2.8.

Lemma 5.2.8. N ′t has a K-feasible routing cut if and only if N ′′t has a K-feasible routing cut.

Proof. Using the Max-flow Min-cut Theorem [32], N ′′t has a cut with e(X ′′, X ′′) ≤ K if and

only if the maximum flow between s and t′ is no more than K. Each bridging edge in flow

residual graph N ′′t has capacity of 1, thus the augmenting path algorithm can be used to find

maximum flow. If K + 1 augmenting paths are found, N ′′t cannot possess a K-feasible edge

cut. If K or fewer augmenting paths are found, e(X ′′, X ′′) ≤ K, resulting in a disconnection of

the N ′′t before finding the (K + 1)th path. The K-feasible node cut (X ′′, X ′′) can be identified

www.manaraa.com

74

by performing a DFS rooted at s on the nodes in N ′′t that are reachable in the residual

graph. N ′′t induces a node cut (X ′, X ′) in N ′t by creating u ∈ input(X ′) corresponding to

u1 ∈ input(X ′′).

The ability of the depth increasing node to be any {d : d ∈ Nt, g(d) = p} creates multiple

valid LUT (t) sets, each with equal routing depth but potentially different logic depth. For

each Nt with a K-feasible node cut as found in N ′′t , the optimal overall depth cut can be found

by choosing the minimum hL(Xt, Xt) according to Equation 5.3. It must also be noted that

the minimum depth routing and logic solution is not necessarily unique, and there may be

alternative cuts that produce depth-equivalent solutions. This characteristic alludes to cut-

enumeration techniques and can be used to encourage LE formation through choosing the cut

with the minimum node cut size, nmin(Xt, Xt).

Lemma 5.2.9. If hL(Xt, Xt) > hL(X,X), the minimum routing and logic depth solution of

Nt is (Xt, Xt) = (X,X).

Let m be the number of edges in Nt. Given the preceding discussion, a minimal depth

solution uses a O(n) search for d, a O(m + n) DFS search for its predecessors, and O(K ·m)

to identify the minimum depth routing cut for each d.

Theorem 5.2.10. A minimum height routing cut with minimum logic depth in Nt can be

found in O(n2 +K ·m · n).

Applying Theorem 5.2.10 in topological order yields a labeling of Nt such that the routing

depth of t is minimum and, within its confines, the logic depth is also minimum. This yields

a complete labeling solution for each node in N .

Corollary 5.2.11. A minimum depth solution of N can be found in O(n3 +K ·m · n2).

5.3 ChainMap Mapping

The mapping phase of the ChainMap algorithm is identical to that of FlowMap and its

proof is reproduced here for the sake of completeness. It consists of creating a set T that initially

www.manaraa.com

75

contains all the POs. For each t ∈ T , a minimum height cut (Xt, Xt) was computed during

labeling. Using this cut, t′ is created from the nodes in Xt and is the K-LUT implementing

all nodes in Xt. T is updated as (T − {t}) ∪ input(t′), and the process is repeated until all of

the nodes in T are PIs. It remains valid for ChainMap as long as node labeling is performed

as prescribed in Section 5.2.

Theorem 5.3.1. For any K-bounded Boolean network N , ChainMap produces a K-LUT map-

ping solution with minimum depth in O(m+ n) time.

Proof. By induction, for any node t ∈ N , if a K-LUT t′ is generated for t during the mapping

phase, then the level of t′ in the mapped solution is no more than g(t) and l(t), the depth of

the optimal mapping solution for Nt. Since any solution for N induces a solution for Nt, g(t)

and l(t) are also the minimum depths for the K-LUT generated for t in a mapping solution of

N . Therefore, the mapped solution of N is optimal and requires O(n+m) time [20].

Corollary 5.3.2. Labeling requires O(n3 + K · m · n2), and mapping requires O(n + m).

Hence, the first two stages of ChainMap are polynomial in O(n3 + K ·m · n2) + O(n + m) =

O(n3 +K ·m · n2). In practice, m = O(K · n) and K = {4, 5, 6}, making their runtime O(n3).

A logic chain is defined as a series of depth increasing nodes, such that the logic depth of

each consecutive chain node increases, while the routing depth remains constant.

Definition 5.3.3. A logic chain is a subnetwork L ⊆ N such that g(uj) = g(ui), l(uj) =

l(ui) + 1,∀ui, uj ∈ L.

Figure 5.3 is a 2-bit full adder represented as a DAG. Figure 5.3(a) shows iteration 1 of

ChainMap when K = 3, where nodes {a, b, e, f} have routing and logic labels of 1 because

they receive inputs directly from PIs. Figure 5.3(b) shows iteration 2, where nodes {c0, c, d}

all receive logic and routing labels of 1 based on the same cut, occurring when each are depth

increasing nodes for their respective sub-graph cones. Nodes {g, h, i}, all use a similar cut

in the network which sees node c0 as a depth increasing node, given by Figure 5.3(c). No

K-feasible cut exists for which {g, h, i} can be the depth increasing node and yield a minimum

www.manaraa.com

76

Algorithm 1 The ChainMap Algorithm

1: procedure ChainMap(N)
2: for v ∈ N do . Phase 1:Labeling
3: l(v) = g(v) = 0
4: end for
5: T = N − PI(N) in topological order . O(n+m)
6: while |T | > 0 do
7: T = T − {t}; Nt = DFS(N, t); add global source s
8: let p = max{g(u) : u ∈ input(t)};
9: let q = max{l(u) : u ∈ input(t)}

10: Xt = ∅;
11: let P = {u : u ∈ Nt, g(u) = p} in topological order
12: for {d : d ∈ P} do . Test all g(d) = p cuts
13: let Pd = DFS(P, d); Pd = P − Pd . Predecessors of d with g(v) = p
14: if ∃edge(u, v), ∀u ∈ Pd − {d}, v ∈ Pd then
15: Nt is invalid for d, skip rest of for loop
16: end if
17: form d′ by collapsing u ∈ Pd into d
18: if Pd = ∅ then t′ = d′

19: else
20: form t′ by collapsing u ∈ Pd into t
21: end if
22: create N ′t with t′ and d′

23: split {v : v ∈ N ′t : v 6= s, v 6= t} into {v1, v2}
24: assign cap(v1, v2) = 1 to bridge edges, ∞ to all others
25: MaxFlowMinCut(N ′′t) . Compute max-flow, min-cut O(Kmn)

26: if {∃(X′′, X′′) : e(X′′, X′′) ≤ K} then
27: induce (X′, X′) in N ′t from (X′′, X′′) in N ′′t
28: induce (X, X) in Nt from (X′, X′) in N ′t
29: if hL(X, X) < hL(Xt, Xt) then
30: Xt = X; Xt = X
31: end if
32: end if
33: end for
34: if Xt 6= ∅ then . If found a valid cut
35: g(t) = p; l(t) = hL(Xt, Xt) + 1
36: else
37: g(t) = p + 1; l(t) = hL(Xt, Xt) + 1
38: end if
39: end while
40: T = PO(N) . Phase 2:Mapping
41: while {t : t ∈ T, t /∈ PI(N)} do
42: form LUT t′ by collapsing v ∈ Xt into t
43: T = (T − {t}) ∪ input(t′)
44: end while
45: T = N − PI(N) in reverse topological . Phase 3:Duplication
46: while T 6= ∅ do
47: T = T − {t};
48: L = {u, v : u, v ∈ output(t), g(t) = g(u) = g(v)}
49: for u, v ∈ L do
50: if {u, v} is a valid LE and L− {u, v} 6= ∅ then
51: Create t′ as a duplicate of node t
52: output(t) = output(t)− {u, v}; output(t′) = {u, v}
53: L = L− {u, v}
54: end if
55: end for
56: while |L| > 1 do
57: L = L− {u}
58: output(t) = output(t)− {u}; output(t′) = {u}
59: end while
60: end while
61: end procedure

www.manaraa.com

77

routing depth solution. However, c0 can serve as a depth increasing node for each, indicating

that edge(c0, h) and edge(c0, g) are chain nets. Thus nodes {g, h, i} each have a routing label

of 1 and a logic label of 2. This corresponds accurately to the cout0 of bitslice 0 of a full-adder

driving the sum1 and cout1 of bitslice 1.

Figure 5.3(d) shows how a mapped solution is generated from minimum-depth cuts. Ini-

tially, T = {c1, s1, s0}, corresponding to all POs of the network. When c1 is removed its

inputs are added, yielding T = {i, s1, s0}. The cut generated when labeling node i generates

an LUT (i) = {i, h, f, e}, resulting in T = {a1, b1, c0, s1, s0}. The process is repeated, yielding

LUT (g) = {g, f, e}, LUT (c0) = {a, b, c, c0}, and LUT (d) = {d, a, b}. Note that nodes {e, f}

and {a, b} are implicitly duplicated by LUT (i) and LUT (g), and LUT (c0) and LUT (d), re-

spectively. This example demonstrates that ChainMap can successfully identify logic chains

resulting from arithmetic operations.

5.4 ChainMap Duplication

The exclusivity constraint of chains is defined as the requirement that a chain net be a

single-source, single-sink relationship between adjacent LEs. When the network is viewed as

a set of LUTs, as in SIS internal representation, it means that a node t can have at most two

chain outputs u and v. However, there are constraints on which LUTs can be part of the same

LE, assuming that an architecture allows a full K-LUT function on the chain. Note that a

discussion of N now assumes that the mapping phase has been applied, thus references to t

indicate the actual K-LUT formed by collapsing the nodes in LUT (t) to t.

Lemma 5.4.1. For each t ∈ N , if {u, v : u, v ∈ output(t), v 6= u, g(t) = g(u) = g(v)} satisfy

the following constraints, {u, v} can populate the same LE. If any u cannot be paired with any

v, u is implemented in an LE by itself.

(i) If input(u) = input(v) and |input(u)| = |input(v)| = K, then u and v must compute the

same function.

(ii) If |input(u) ∪ input(v)| < K, then u and v can compute separate functions.

www.manaraa.com

78

Figure 5.3 2-bit full adder for K = 3

www.manaraa.com

79

(iii) For a pair u, v ∈ output(t), g(w) > g(u),∀w ∈ output(u) and g(x) = g(v),∀x ∈

output(v).

(iv) u /∈ input(v) and v /∈ input(u).

In Lemma 5.4.1(i), the number of distinct inputs for nodes {u, v} meeting |input(u) ∪

input(v)| ≤ K does not necessarily ensure that the computation resources are available in an

LE. If either |input(u)| = K or |input(v)| = K, then {u, v} cannot reside in the same LE

because there can only be one K-input function computed by the LE, as in Figure 3.1(b).

However, if both |input(u)| < K and |input(v)| < K, the LE has enough LUT resources to

accommodate both sub-width functions but is still limited to K − 1 distinct inputs, reflected

in Lemma 5.4.1(ii), and in Figure 3.1(a). Exclusivity also requires that outputs of u and v are

heterogeneous. That is, u must only source a routing net, while v must only source a chain net,

or vice versa, as in Lemma 5.4.1(iii). This constraint indicates that an LE has only one available

cout port and one sum port. It should be noted that the use of the terms cout and sum refer

only to the type of net a node drives, chain or routing, respectively. It does not indicate the

Boolean function computed by either node, it is merely borrowed nomenclature from carry-

select addition. If nodes u and v are to be contained in the same LE, one must exclusively use

the cout port, and one must exclusively use the sum port. Finally, Lemma 5.4.1(iv) indicates u

and v cannot be dependent on each other because there is not internal LE connection between

the sum and cout LUTs.

If a node has more than one chain net output, it must be duplicated if its descendants

cannot meet the aforementioned constraints. Figure 5.4(a) shows a logic chain tree formed by

ChainMap. In it, all routing nets are omitted, and all nodes are in logic chains. Original internal

nodes are white, leaf nodes are black, and duplicate nodes are gray. Using output(b) = {t1, t3, c}

as an example, assume no LEs can be formed of any pair. This precipitates two duplications

of b, which causes output(a) = {b, t4} to change to output(a) = {t4, b, b, b}. Assuming no LEs

can be formed of any pair in {t4, b, b, b}, a is duplicated three times, which causes s to be

duplicated at least three times. This pattern continues for all nodes in Figure 5.4(a), resulting

in Figure 5.4(b).

www.manaraa.com

80

Figure 5.4 Chain tree (a) before, (b) worst case duplication, (c) average
case with relaxation.

Lemma 5.4.2. The number of node duplications required in N to satisfy exclusivity is O(n2).

Proof. Let Ns be a subgraph consisting of edges and nodes discovered in a depth first search

rooted at s ∈ N , such that for u ∈ Ns, v ∈ output(s), v is visited only if g(u) = g(v). By

Definition 5.2.1, there can only exist one edge(u, v) ∈ Ns, ∀u, v ∈ Ns. Therefore, Ns is a logic

chain tree with leaf nodes denoted ti, 1 ≤ i ≤ |V (Ns)|, as in Figure 5.4(a). Additionally, there

exists a logic chain Lj , 1 ≤ j ≤ |V (Ns)| from s to ti, pursuant to Definition 5.3.3.

The worst case area expansion occurs when u is duplicated ∀edge(u, v),∀u, v ∈ Ns, v ∈

output(u). This implies the duplication network N ′s consists of each path from s to ti duplicated

in its entirety. Figure 5.4(b) demonstrates that N ′s consists of a logic chain for each ti, because

1 ≤ i, j ≤ |V (Ns)|, |V (N ′s)| = O(|V (Ns)|) · O(|V (Ns)|). Therefore, for N with n nodes, the

number of duplications is O(n2).

Theorem 5.4.3. For any K-bounded Boolean network N , a O(n2) expansion is performed for

n nodes in N , and ChainMap produces a depth optimal solution valid within the exclusivity

constraint in O(n3) time.

Corollary 5.4.4. The labeling phase of ChainMap requires O(n3 + K ·m · n2), the mapping

phase requires O(n + m), and duplication requires O(n3). This makes the entire ChainMap

algorithm polynomial in O(n3 + K · m · n2) + O(n + m) + O(n3) = O(n3 + K · m · n2). In

practice, m = O(K · n) and K = {4, 5, 6}, making the complete runtime O(n3).

www.manaraa.com

81

The ChainMap algorithm is presented in Algorithm 5.3 and includes all three stages. Chain-

Map maintains a polynomial O(n3) runtime with mapped solution area bound by O(n2) of the

original network. Area is a big concern because ChainMap assumes its routing delay is equiv-

alent to that encountered in a traditional mapping solution. If the worse case is encountered,

the increased wire length usurps any performance gains. Duplication is combated by relaxing

chain nets to allow more nodes to comply with Lemma 5.4.1.

5.5 ChainMap Relaxation

The classic trade-off between area and speed is extremely evident in ChainMap solutions.

Results indicate full duplication yields highly prohibitive area increases. For example, the

number of 5-LUTs in traditional mapping versus a ChainMap solution increases from 4,752 to

9,835 for cfft (K = 5, before, 2.07x). Relaxation of routing depth can be used as a means

for reducing area. In return for adding a level of routing to some paths, a chain net and its

duplication are eliminated. Because ChainMap makes all paths of roughly uniform routing

depth, the delay of the network is dependent on the variance in logic depth. The goal is to

relax paths with minimum logic depth and mask the additional routing delay with paths of

high logic depth.

5.5.1 Shallowest Logic Branch Trimming

Figure 5.4(a) shows a DFS chain tree rooted at node s. Assuming Lemma 5.4.1 is fulfilled,

output(s) = {a, t5, d, g} can form an LE of {a, t5}. Consequently, assuming {d, g} fulfill (i), (ii),

and (iv), they still cannot form an LE because they violate (iii). Duplications occur en masse

under this circumstance, along the longest network paths. Instead, if edge(s, d) and edge(s, g)

are relaxed from chain to routing nets, the tree is disconnected at d and g, and at least 2

duplications of s are saved. Figure 5.4(c) assumes that all nodes satisfy Lemma 5.4.1, except

for nodes {d, g}, which violate item (iii), and t1 because {c, t3} form a valid LE. All are relaxed

because they are not along the longest logic branch of their respective sub-trees. Figure 5.4(b)

www.manaraa.com

82

shows the worst case for area, while Figure 5.4(c) shows the average case ChainMap solution,

with LE pairs circled in dotted lines.

A simple relaxation technique, presented in [38], masks added routing depth along the

longest logic paths in a network. For all s ∈ N and u, v ∈ output(s), the longest DFS chain

tree branch v and its valid LE mate u are preserved, while output(s) − {u, v} are relaxed.

Longer logic chains are preserved, ultimately masking the delay of the relaxed edge(s, v). This

heuristic method specifically targets arithmetic designs typically containing chain tree nodes

with long and short logic branches. Shallowest logic branch trimming refers to the relaxation

of all of the shortest logic branches rooted at each node, while the longest logic branches are

preserved.

5.5.2 Least Critical Branch Trimming

The shallowest logic technique is easily applied, however, judging delay based solely on

depth and not accounting for the routing depth imposed by other relaxations does not translate

well to a final placed and routed design. To more accurately identify the critical connections in

a design, and conversely the least critical ones, it is necessary to incorporate timing information

into relaxation. To perform relaxation with criticality, the delay of a directed edge from u to

v ∈ output(u) is denoted delay(u, v) and a binary delay model is used such that chain nets

have delay delay(u, v) = c and general routing nets have delay(u, v) = g.

Instead of judging critical paths solely on logic depth, the connection criticality metric

employed by T-Vpack, outlined in Section 2.2.3 by Equations 2.2 to 2.8, can be employed

to identify relaxations with a higher degree of accuracy. Criticality is an indication of the

amount of slack available in a connection, with tie-breakers to positively bias the connection

that affects the greatest number of critical paths (critPaths(v), Equation 2.7), and is the least

distance to PIs or POs (DPI(v)). Rather than relaxing the shortest logic paths in output(s),

it is more exact to relax the connections that are least critical.

Criticality, as expressed by Equation 2.8 can not be conveyed directly to relaxation. It

requires modification to more effectively address the problem of duplication in chains. The

www.manaraa.com

83

base criticality and critical path impact remain as expressed by Equation 2.5 and Equation 2.7,

respectively. However, worst case network expansion occurs when the tail of a chain is dupli-

cated, creating a ripple-effect that causes entire length of a chain to be duplicated. Therefore,

the path length criticality tie-breaker DPI(v) is altered to stress the length of chain head, and

is given precedence over critical paths. Dhead(v) measures the distance v is from the start of

a chain, and creates a bias toward nodes that, if duplicated, would cause duplication across

the entire chain length. Nodes that can potentially cause a large number of duplications are

regarded as less critical. Another factor that expresses the likelihood of duplication is the

number of chain outputs of a node, Ncout. As Ncout increases, the number of duplications in-

creases, and criticality decreases. Dhead(v) and Ncout are given precedence over critPaths(v),

as conveyed by Equation 5.5 through reassignment of ε.

criticality(v) = baseCrit(v) + ε ·
(

1− Dhead(v)

MaxDhead

)
+ ε2 ·

(
1− Ncout(v)

MaxNcout

)
+ ε3 · critPaths(v) (5.5)

For relaxation via branch trimming, the network is parsed in reverse topological order (PO

to PI), and each node s possessing chain descendants, D = {v : v ∈ output(s), delay(s, v) = c},

is subjected to relaxation. If |D| < 2, s requires no duplication. If |D| > 1 or more chain

descendants, the best LE formed by {u, v ∈ D} consisting of v where criticality(s, v) >

criticality(s, u),∀u ∈ D and u where criticality(s, u) > criticality(s, w), ∀w ∈ D − {v} and u

is a valid LE mate to v. That is, the LE contains v, the chain with highest criticality, and u,

the chain with the second highest criticality that forms a valid LE pair with v. Note that if

there is not a node u that forms a valid LE with v, u = ∅ is a valid condition. Once the highest

value LE is chosen, delay(s, w) = g,∀w ∈ D − {v, u}, i.e all other chain outputs are relaxed.

Least critical branch trimming, Algorithm 5.5.2, is called by ChainMap instead of duplica-

tion (Section 5.4). The network is parsed in reverse topological order to assure that each node’s

descendants have been successfully relaxed before exclusivity and relaxation are applied to the

current node. The procedure call ComputeNetworkCriticality{N} refers to the process out-

lined in [12] used to compute network slack using Equation 5.5. An important characteristic of

www.manaraa.com

84

least critical branch trimming is that it allows no duplications. For every node possessing chain

outputs, its chain descendants either constitute the “best LE”, or are relaxed. Because of the

application of least critical branch trimming, no node duplications are required by ChainMap’s

duplication phase.

Algorithm 2 Least Critical Branch Trimming

1: procedure TrimBranches(N)
2: S = N − PI(N)− PO(N) in reverse topological order
3: while S 6= ∅ do
4: ComputeNetworkCriticality(N) . Re-compute network criticality
5: S = S − {s}
6: D = {v : v ∈ output(s), delay(s, v) = c}
7: Define v s.t. criticality(s, v) > criticality(s, w),∀w ∈ D
8: Define u s.t. criticality(s, u) > criticality(s, w),∀w ∈ D − {v} and u, v are a valid LE
9: for w ∈ D − {u, v} do

10: delay(s, w) = g
11: end for
12: end while
13: end procedure

5.5.3 Global Least Critical Relaxation

Disallowing duplications posits the question: can they be beneficial or are they universally

undesirable? An alternative to branch trimming is global least critical relaxation. It incor-

porates the same notion of criticality used in branch trimming (Equation 5.5), but instead of

traversing the network in reverse topological order and requiring all chain descendants not part

of the “best LE” be relaxed, the least critical chain net that can accommodate relaxation in

the entire network is relaxed each iteration. The processes continues until no further relaxation

can be tolerated, at which point the original duplication phase of ChainMap (Section 5.4) is

invoked. Global least critical relaxation deviates from branch trimming in the following ways:

• Relaxation is performed after the mapping phase and before duplication.

• Duplications are allowed.

• The critical path of the network is bounded by a user-defined value.

• Relaxation is only performed on connections that can accommodate it.

The relaxation phase occurs after mapping and before duplication of the network. Global

relaxation has the goal of finding all connections that are capable of accommodating a relax-

www.manaraa.com

85

ation, ranked in order from least to most critical, and recomputed after each relaxation. Once

all connections have been accommodated and relaxed, the network is duplicated to comply

with the exclusivity constraint. Any duplications that are necessary in the relaxed network

are performed, regardless of area impact.

Estimated network delay is calculated according to Equation 2.2 as the maximum ar-

rival time of all POs. The designer has the option of granting the network global slack, or

limit it to that which is natively available in the technology map. Instituting global network

slack, ∆ increases the slack available in all paths by setting Trequired(v) = max{Tarrival(u)}+

∆,∀u, v ∈ PO(N). This directly effects Equations 2.3 and 2.4, and allows an increased

number of relaxations to occur. In fact, global network slack is the primary way through

which duplications are eliminated using global least critical relaxation. The procedure call

ComputeNetworkCriticality{N,Tmax} refers to the process outlined in [12] used to compute

network slack using Equation 5.5, with the exception that the maximum required time is

incremented by ∆ to provide global slack.

Relaxations are only allowed on connections that can accommodate it. This means that

the amount of slack available in a chain connection has to meet or exceed the cost of a general

routing connection. Any connection not able to accommodate a relaxation is left alone, regard-

less of criticality value. Varying the G : L ratio of the network serves as the secondary method

for eliminating duplications. As G : L increases, either the global network slack or number of

duplications must increase. Conversely, for values of G : L ≈ 1, the number of relaxations will

increase as will the potential delay through the network. Experiments have determined that

the amount of global slack applied is about three general routing connections, with G : L = 3.

Algorithm 5.5.3 presents global least critical relaxation. It contains a loop that executes as

long as a connection that can accommodate a relaxation exists in the network. Each iteration

of the loop, the network slack must be updated, after which the accommodating connection

with the lowest criticality is relaxed. After each relaxation takes place, the slack of each path

containing it must be updated. This has the effect of changing the criticalities and slack of

www.manaraa.com

86

most, if not all, of the connections in the network. The least critical relaxation occurs before

the ChainMap duplication phase.

Algorithm 3 Global Least Critical Relaxation

1: procedure RelaxLeastCritical(N)
2: ComputeNetworkCriticality(N) . Initialize network criticality
3: Tmax = Tarrival(v) s.t. Tarrival(v) > Tarrival(u), ∀u, v ∈ PO(N)
4: Tmax = Tmax + ∆ . Adjust max arrival time with global network slack
5: ComputeNetworkCriticality(N , Tmax) . Re-compute network criticality with max arrival time
6: while ∃u, v ∈ N s.t. delay(u, v) ≤ slack(u, v) do
7: if ∃u, v : delay(u, v) ≤ slack(u, v) ∧ criticality(u, v) < criticality(w, x), u, v, w, x ∈ N then
8: delay(u, v) = g . Relax the least critical accommodating connection
9: end if

10: ComputeNetworkCriticality(N , Tmax) . Re-compute affected paths with max arrival time
11: end while
12: end procedure

The branch trimming approaches also use global least critical relaxation after the dupli-

cation phase as a means for providing subsequent CAD flow stages greater flexibility. Global

least critical relaxation applied after branch trimming essentially finds all relaxations that can

be had for free, i.e. chains that don’t influence the critical path. Fewer chains in the network

means greater solution space for clustering, placement, and routing. The only modification to

the basic global least critical algorithm is that LEs which source or sink chain connections are

disallowed to relax. This prevents the dissolution of LE relationships that are important for

area reasons. Chains can be used to reduce the area of a design, a characteristic that will be

discussed in Section 6.1, with the presentation of ChainPack.

5.6 Post-Technology Map Results

To accurately assess the effectiveness of the ChainMap algorithm, it is necessary to test

designs with HDL defined arithmetic carry chains. For this purpose OpenCores [62] DSP,

security, and controller benchmarks have been selected with a range of arithmetic penetrance.

Figure 5.5 depicts the design flows, each inserting arithmetic at different points:

• Forget - Arithmetic chains are optimized by synthesis and technology mapped by Chain-

Map without HDL.

www.manaraa.com

87

Figure 5.5 Experimental Design Flows

• Before - Arithmetic chains are preserved through synthesis, and reinserted before Chain-

Map technology mapping.

• After - Arithmetic chains are preserved through synthesis and ChainMap technology

mapping, and reinserted before clustering, placement, and routing.

• Normal - Arithmetic chains are preserved through synthesis and FlowMap technology

mapping, and reinserted before clustering, placement, and routing.

Quartus II has an open netlist format, VQM, and an open design flow where academic

tools can be tested [55]. Because SIS lacks HDL elaboration, a parser has been created to

implement a VQM netlist in SIS internal representation. An option has been included to

preserve arithmetic carry chains or implement them as bit-sliced cout and sum operations.

The drawback to using Quartus II for HDL interpretation is that optimization and K-LUT

mapping on the netlist has been performed before importing to SIS. To mitigate this, the

logic network is decomposed into 2-input AND and OR gates and resynthesized with SIS using

script.algebraic. The speedup and area (i.e. number of LUTs) results produced by the three

ChainMap flows are normalized to the normal flow. Speedup values greater than 1 represent

a decrease in delay. An LUT ratio of less than 1 indicates area savings.

www.manaraa.com

88

Figure 5.6(b) shows optimal and shallowest logic branch trimming speedup for full-width

chains averaged across all benchmarks under all three flows for K = {4, 5, 6}. Likewise Fig-

ure 5.6(b) shows optimal and shallowest logic branch trimming speedup for sub-width chains.

The independent axis is the ratio of average routing delay to LUT delay (G : L). Since routing

delay is variable, Figure 5.6(b) shows how speedup is affected by changes in average routing

delay relative to static LUT delay. Changing G : L shows how the effectiveness of the heuristic

relaxation technique changes as average routing delay increases. Common G : L lies within

the range of [2, 4], which for Stratix is akin to an LUT delay of 366 ps and routing delay of

[732ps, 1464ps].

The timing-based relaxation techniques in Sections 5.5.2 and 5.5.3 are not presented be-

cause post technology map estimation using G : L does not model circuit timing with enough

accuracy to provide a reasonable assessment of performance. Optimal and shallowest logic

results give an indication of potential performance without the place and route experiments

necessary to fully judge timing-based approaches. Simple estimation allows a narrowing of the

solution space without comprehensive experiments.

Tables 5.1, 5.2, and 5.3 show results for all benchmarks using full-width chains. They

present the optimal and relaxed routing (Go, G) and logic (Lo, L) of the path with maximum

routing depth and maximum logic depth, the speedup when G : L = 3, the relaxed number of

LUTs used, and ratio of ChainMap LUTs to normal (λ). They indicate that in all cases the

optimal ChainMap solution is faster than HDL dictated chains. However, the relaxed solutions

represent a mixed record of taking advantage of this potential speedup, but do consistently

reduce the overall LUT utilization of a benchmark.

Benchmark results indicate optimal ChainMap performance varies with flow and LUT

size, but are equal to or better than normal, as expected. Varying the value of K produces

results that mirror the expected result of incorporating more logic into each LUT; as LUT

size increases, speedup increases and area decreases. Across all LUTs, the before and forget

flows closely mirror each other, with an average difference of approximately 5%. This is a very

important result, as it means that arithmetic chains can be discovered and mapped without

www.manaraa.com

89

(a) Optimal (b) Shallowest logic branch trimming

Figure 5.6 Full-width speedup of ChainMap flows relative to normal flow
vs. average routing to LUT delay ratio.

(a) Optimal (b) Shallowest logic branch trimming

Figure 5.7 Sub-width speedup of ChainMap flows relative to normal flow
vs. average routing to LUT delay ratio.

www.manaraa.com

90

relying on HDL macros. Although ignoring HDL macros and using ChainMap with relaxation

produces solutions typically between 0.95x and 1.4x the speed of the normal case, the optimal

results indicate that there are still potential performance increases to be realized.

An interesting phenomena occurs in Figure 5.6(b) where, as G : L increases, the effective-

ness of relaxed before and forget increases for K = 4, holds steady for K = 5, and decreases

for K = 6, while after increases for all K. This is due to the disparate affect that the relax-

ation technique has on before and forget versus after, and the decrease in nets as K increases.

Because relaxation is applied to shorter logic paths to mask its effect with longer logic paths,

as G : L increases, the ability to mask relaxed nets decreases for larger K. This does not affect

the after flow, because very few chain nets can be identified by ChainMap when HDL macros

are excluded during mapping, thus relaxation is rarely applied. K = 4 maintains relatively

deep logic depth due to many LUTs and nets, while logic depth is reduced for K = {5, 6},

revealing their lack of ability to mask relaxations as effectively.

The most heavily arithmetic design, the radix-4 FFT, yields a relaxed solution that is

1.00x speedup of normal, and an optimal solution of 1.11x (cfft, K = 5, before). This indi-

cates that ChainMap, coupled with the relaxation procedure in Section 5.5, produces chains

at least as well as HDL macros, but that there may exist other less aggressive LUT reduc-

tion relaxation techniques. The LUT results reflect this, with the ChainMap solution 0.71x

that of normal, indicating optimal performance can potentially be recouped through different

relaxation techniques, or relying on the smaller design to yield shorter wires during PNR.

The phenomena of area reduction applies to nearly all designs tested and can potentially

increase speedup values universally. It stems from two sources, the first being that the chain

cut is a naturally more area aggressive. If a node fails to join a logic level q (d = t) because

of a cut size of greater than K, ChainMap searches out an alternate K-feasible cut (d 6= t).

This cut is an alternative to implementing the node on a new logic level and thus each chain

cut tends to incorporate more nodes. The second, more prevalent, reason is that preserved

arithmetic chains are typically 3-input gates that are not merged with others and are ultimately

www.manaraa.com

91

Table 5.1 Performance Summary for OpenCores Benchmarks, K=4

Normal Forget Before After
Design G L LUT Go Lo SUo G L SU LUT λ Go Lo SUo G L SU LUT λ Go Lo SUo G L SU LUT λ

cfft 5 4 4639 3 38 1.06 5 37 0.96 3958 0.85 3 38 1.06 5 37 0.96 3764 0.81 4 6 1.00 4 6 1.00 4640 1.00
mlt3x3 2 34 901 2 33 1.03 3 32 0.98 997 1.11 2 33 1.03 3 16 1.03 850 0.94 2 34 1.00 2 34 1.00 901 1.00
reedsol 9 8 1411 7 9 1.17 10 9 0.90 1401 0.99 7 9 1.17 10 9 0.90 1401 0.99 7 9 1.17 10 9 0.90 1407 1.00

jpeg 6 15 5890 4 8 1.32 7 8 1.14 6546 1.11 4 7 1.32 6 6 1.18 5493 0.93 5 16 1.06 6 16 0.97 5916 1.00
dct 4 8 4767 2 19 1.12 3 19 1.00 5597 1.17 2 19 1.12 3 19 1.00 4572 0.96 3 8 1.00 4 8 1.00 4767 1.00
eth 7 6 301 4 6 2.00 6 5 1.50 307 1.02 4 6 2.00 6 5 1.50 302 1.00 5 9 1.13 6 5 1.03 325 1.08
usb 8 7 3587 5 8 1.35 6 8 1.19 3609 1.01 5 8 1.35 6 8 1.19 3569 0.99 5 8 1.35 6 8 1.19 3738 1.04
xtea 6 36 982 4 36 1.13 7 34 0.98 1163 1.18 4 36 1.13 5 36 1.06 1034 1.05 5 31 1.10 5 31 1.10 990 1.01
des3 7 6 946 6 7 1.08 6 7 1.08 1056 1.12 6 7 1.08 6 7 1.08 1056 1.12 6 7 1.08 6 7 1.08 1064 1.12
rsa 7 39 1227 4 36 1.25 7 35 1.07 1234 1.01 4 36 1.25 7 35 1.07 1002 0.82 6 38 1.07 6 39 1.05 1194 0.97

md5 18 78 2600 13 76 1.15 24 74 0.90 3033 1.17 14 75 1.13 22 71 0.96 2872 1.10 15 38 1.08 18 68 1.03 2838 1.09
sha512 8 70 5908 7 72 1.01 12 70 0.89 6702 1.13 7 69 1.04 11 68 0.93 5855 0.99 8 70 1.00 8 70 1.00 5780 0.98
twofish 55 54 2748 20 64 1.77 26 55 1.65 3696 1.34 20 64 1.77 26 55 1.65 3696 1.34 20 64 1.77 26 55 1.65 3696 1.34

ava 30 34 13670 8 26 2.48 19 29 1.44 14543 1.06 8 26 2.48 19 29 1.44 14894 1.09 8 26 2.48 19 34 1.36 14772 1.08
aes128 15 14 13286 9 15 1.37 12 16 1.13 15311 1.15 9 15 1.37 12 16 1.13 15311 1.15 9 15 1.37 12 16 1.13 15311 1.15
Total 187 413 62863 98 453 – 153 438 – 69153 – 99 448 – 147 417 – 65671 – 108 379 – 138 406 – 67339 –
Ratio 1.00 1.00 1.00 0.52 1.10 1.36 0.82 1.06 1.14 1.10 1.10 0.53 1.08 1.36 0.79 1.01 1.17 1.04 1.04 0.58 0.92 1.28 0.74 0.98 1.16 1.07 1.07

Table 5.2 Performance Summary for OpenCores Benchmarks, K=5

Normal Forget Before After
Design G L LUT Go Lo SUo G L SU LUT λ Go Lo SUo G L SU LUT λ Go Lo SUo G L SU LUT λ

cfft 4 6 4749 3 36 1.11 5 34 1.02 3840 0.81 3 36 1.11 5 35 1.00 3357 0.71 3 41 1.00 5 5 1.00 4639 0.98
mlt3x3 2 34 901 2 17 1.74 3 17 1.54 760 0.84 2 17 1.74 3 17 1.54 754 0.84 2 34 1.00 2 34 1.00 901 1.00
reedsol 7 6 1231 5 11 1.04 7 9 0.90 1217 0.99 5 11 1.04 7 9 0.90 1217 0.99 5 11 1.04 7 9 0.90 1225 1.00

jpeg 6 13 5875 4 6 1.72 6 6 1.29 5059 0.86 4 6 1.72 6 6 1.29 4916 0.84 5 16 1.00 6 16 0.91 5887 1.00
dct 4 8 4767 2 11 1.65 3 10 1.47 4123 0.86 2 11 1.65 3 10 1.47 4059 0.85 3 8 1.00 4 8 1.00 4767 1.00
eth 6 5 258 4 9 1.62 6 6 1.42 242 0.94 4 9 1.62 6 6 1.42 242 0.94 4 20 1.06 6 8 1.00 267 1.03
usb 8 7 3111 5 8 1.35 6 8 1.19 3211 1.03 5 8 1.35 6 8 1.19 3186 1.02 5 8 1.35 6 8 1.19 3387 1.09
xtea 6 36 1009 4 30 1.29 6 29 1.15 900 0.89 4 30 1.29 6 29 1.15 910 0.90 5 32 1.13 5 32 1.13 974 0.97
des3 7 6 824 5 8 1.17 6 8 1.04 993 1.21 5 8 1.17 6 8 1.04 993 1.21 5 8 1.17 6 8 1.04 1002 1.22
rsa 6 38 1132 4 21 1.70 7 20 1.37 928 0.82 4 21 1.70 7 19 1.40 912 0.81 5 39 1.04 6 38 1.00 1135 1.00

md5 18 58 2569 12 52 1.41 21 26 1.11 2498 0.97 12 51 1.43 21 41 1.12 2465 0.96 15 51 1.06 16 75 1.01 2517 0.98
sha512 8 70 5518 6 68 1.09 10 65 0.99 4854 0.88 6 68 1.09 9 66 1.01 4828 0.87 8 70 1.00 8 70 1.00 5358 0.97
twofish 50 49 2602 13 60 2.01 23 56 1.59 3100 1.19 13 60 2.01 23 56 1.59 3100 1.19 13 60 2.01 23 56 1.59 3100 1.19

ava 22 26 13415 8 24 1.92 11 19 1.77 11807 0.88 8 24 1.92 11 19 1.77 11989 0.89 8 24 1.92 11 19 1.77 12501 0.93
aes128 13 12 11939 7 16 1.38 11 13 1.11 12703 1.06 7 16 1.38 11 13 1.11 12703 1.06 7 16 1.38 11 13 1.11 12703 1.06
Total 167 374 59900 84 377 – 131 326 – 56235 – 84 376 – 130 342 – 55631 – 93 438 – 122 399 – 60363 –
Ratio 1.00 1.00 1.00 0.50 1.01 1.49 0.78 0.87 1.26 0.94 0.94 0.50 1.01 1.49 0.78 0.91 1.27 0.93 0.93 0.56 1.17 1.25 0.73 1.07 1.16 1.01 1.01

implemented as lone, underpopulated LUTs. ChainMap allows these underpopulated LUTs to

be packed together.

5.7 Summary

ChainMap provides a polynomial time solution to the problem of identifying generic logic

chains in a Boolean network. By looking at the problem of circuit depth from the perspec-

tive of minimizing routing depth, it has been shown that considerable performance gains are

potentially available. The important contributions of ChainMap are as follows:

www.manaraa.com

92

Table 5.3 Performance Summary for OpenCores Benchmarks, K=6

Normal Forget Before After
Design G L LUT Go Lo SUo G L SU LUT λ Go Lo SUo G L SU LUT λ Go Lo SUo G L SU LUT λ

cfft 4 6 4740 3 19 1.79 5 18 1.52 3162 0.67 3 20 1.72 5 19 1.47 3060 0.65 3 41 1.00 4 3 1.00 4620 0.97
mlt3x3 2 34 901 2 17 1.74 3 16 1.60 817 0.91 2 17 1.74 3 16 1.60 748 0.83 2 34 1.00 2 34 1.00 901 1.00
reedsol 6 5 1212 5 6 1.10 5 6 1.10 1130 0.93 5 6 1.10 5 6 1.10 1130 0.93 5 6 1.10 5 6 1.10 1138 0.94

jpeg 5 14 5875 4 5 1.71 5 5 1.45 5248 0.89 4 5 1.71 5 5 1.45 4789 0.82 4 14 1.00 5 14 1.00 5877 1.00
dct 3 7 4766 2 10 1.75 3 10 1.47 4441 0.93 2 10 1.75 3 10 1.47 3993 0.84 3 7 1.00 3 7 1.00 4766 1.00
eth 6 5 255 4 7 1.79 5 6 1.62 221 0.87 4 7 1.79 5 6 1.62 218 0.85 4 20 1.06 5 8 1.06 245 0.96
usb 6 5 2815 4 7 1.21 6 6 0.96 2685 0.95 4 7 1.21 6 6 0.96 2662 0.95 4 7 1.05 6 6 0.96 2876 1.02
xtea 5 35 915 4 28 1.25 6 28 1.09 876 0.96 4 28 1.25 6 28 1.09 746 0.82 5 31 1.06 5 31 1.06 912 1.00
des3 4 3 347 4 3 1.00 4 3 1.00 338 0.97 4 3 1.00 4 3 1.00 338 0.97 4 3 1.00 4 3 1.00 347 1.00
rsa 6 38 1120 4 19 1.81 7 19 1.40 954 0.85 4 19 1.81 7 19 1.40 814 0.73 5 38 1.06 6 38 1.00 1127 1.01

md5 15 52 1730 11 44 1.47 20 44 1.09 2041 1.18 11 43 1.49 18 43 1.16 1945 1.12 13 73 1.01 15 72 0.97 2129 1.23
sha512 8 70 5362 6 68 1.09 11 15 0.96 4741 0.88 6 68 1.09 8 66 1.04 4492 0.84 8 70 1.00 8 70 1.00 5118 0.95
twofish 40 39 2559 13 57 1.66 23 45 1.36 2797 1.09 13 57 1.66 23 45 1.36 2797 1.09 13 57 1.66 23 45 1.36 2797 1.09

ava 17 21 10394 8 19 1.67 10 18 1.50 9960 0.96 8 19 1.67 10 18 1.50 10269 0.99 8 19 1.67 10 18 1.50 10708 1.03
aes128 9 8 3921 6 12 1.17 8 13 0.95 4777 1.22 6 12 1.17 8 13 0.95 4777 1.22 6 12 1.17 8 13 0.95 4777 1.22
Total 136 342 46912 80 321 – 121 252 – 44188 – 80 321 – 116 303 – 42778 – 87 432 – 109 368 – 48338 –
Ratio 1.00 1.00 1.00 0.59 0.94 1.46 0.89 0.74 1.23 0.94 0.94 0.59 0.94 1.46 0.85 0.89 1.26 0.91 0.91 0.64 1.26 1.15 0.80 1.08 1.09 1.03 1.03

1. A formal logic chain definition is presented that encompasses both arithmetic and non-

arithmetic operations.

2. ChainMap creates generic logic chains in polynomial time without HDL arithmetic chain

macros.

3. An area trade-off is necessary due to the exclusivity constraint of current FPGA carry

chain architectures, but can be mitigated with relaxation.

4. Three different relaxation techniques have been proposed: shallowest logic branch trim-

ming, least critical branch trimming, and global least critical relaxation.

5. Optimal ChainMap results describe a baseline of performance for logic chains.

The definition of a logic chain has been formalized as a series of nodes, such that there is a

directed edge(u, v) between adjacent nodes {u, v}, that causes the logic depth of v to increase

while not increasing its routing depth. This definition addresses the fact that there is a clear

difference in the speed of routing versus chain nets and guides their use. The average speedup

of ChainMap versus a traditional mapping algorithm with HDL chains is 1.4x optimally and

1.25x relaxed, for K = {4, 5, 6} and reasonable average routing delays. While all K provide

performance gains, when K = {5, 6}, underpopulated HDL macro LUTs can more often be

packed together, yielding slightly higher average speedup and LUT savings. This result concurs

www.manaraa.com

93

with results for general networks, where K = {5, 6} yield the best depth for LUT-based FPGAs

[68]. An assessment of the impact ChainMap has on place and route is presented in Chapter 7.

ChainMap requires an area/speedup trade off, an artifact of FPGAs enforcing the exclu-

sivity constraint. However, the shallowest logic branch trimming relaxation heuristic presented

allows ChainMap to produce consistent area reductions. Area reductions of up to 0.71x LUTs

are witnessed (cfft, K = 5, before) with neutral speedup, and the potential to increase speed

through shorter wires. Optimal solutions, while prohibitive from an area standpoint, indicate

that better relaxation techniques have the potential to yield ubiquitous speedup increases.

The results presented in this work are indicative of LEs which can operate in both (K-1)

and K-LUT modes, as depicted in Figure 3.1, and supported by the Stratix and chain reuse cell

of Chapter 3 [36]. Sub-width chains can be encouraged by choosing alternative minimum depth

cuts that possess the smallest node cut size, nmin(X,X). This technique is useful because it

allows more nodes to comply with the K − 1 input aspect of the exclusivity constraint, thus

encouraging LE formation. The ChainMap algorithm can be adapted to support pure carry-

select, (K-1)-LUT chains, by searching for a (K-1)-feasible cut when d 6= t, and a K-feasible

cut when d = t. However, the pure carry-select results in Figure 5.7 indicate that valuable

performance is lost by not using the reuse cell of Chapter 3 to achieve full-width chains.

The average estimated performance difference between disregarding HDL macros com-

pletely and inserting chains before mapping is within 5%, indicating HDL preservation might

potentially be abandoned. This could affect the entire FPGA design flow, allowing CAD design-

ers to expand algorithms past the partitions created by HDL. Since the best area/speedup is

usually achieved by the insertion of arithmetic chains before mapping, the inference is that they

are already highly optimized in terms of literal count, and resynthesis creates sub-optimality.

ChainMap demonstrates that generic logic chains perform better than solely arithmetic ones,

a result that could lead to innovative FPGA architectures.

www.manaraa.com

94

CHAPTER 6. POST-TECHNOLOGY MAP CHAIN HANDLING

Logic chains are primarily intended to increase the speed and efficiency of designs, but they

also have an overlooked effect on the area of a design. Even though chains are a single fanout

connection between adjacent LEs, they are a dual-fanout net between LUTs, as currently

supported in FPGA architectures. This allows two sub-width LUTs to be packed into a single

LE. This property of logic chains creates an additional opportunity for a reduction in the area

of a design, as measured by the number of LEs required. Packing LUTs into LEs using chains

can be applied to a valid network after technology mapping to reduce overall LE consumption.

The problems of clustering, placement, and routing have already been widely studied, and

a plethora of solutions exist. However, there is a relively small body of publicly available

work from FPGA vendors and researchers addressing the handling of logic chains. HierARC

is presented as a generic clustering tool which can also accommodate the special constraints

of chains. The chain clustering techniques presented by HierARC are simple strategies used

to assess the effectiveness of ChainMap solutions across the entire design flow. They provide

an intuitive and/or initial basis for dealing with chains, although they are quite possibly not

the most effective solutions. However, due to the reluctance of industry to divulge commercial

techniques, the lack of published literature on the subject, and the inability of current tools to

deal with chains, they borrow very little from existing approaches.

6.1 ChainPack: Chains for Area Reduction

ChainMap selects nets to implement in the fast chain routing when it must do so for

purposes of routing depth optimality. However, it does not select every chain possible, rather

avoiding the use of a chain net if a node is equidistant from its predecessors. This has the effect

www.manaraa.com

95

of leaving many nets to be implemented in general routing when they don’t improve depth,

but may overlook opportunities to reduce the number of LEs.

Figure 6.1(a) shows a possible solution found by ChainMap, where each path in the network

is of optimal routing depth, or suitable relaxed routing depth. Much of the connectivity of

the network has been omitted for clarity, except for the key chain and routing nets, depicted

by solid and dashed lines, respectively. The chain nets implemented are only those necessary

to fulfill optimality and exclusivity, but they are not the only possible ones that can be used.

Each LUT in Figure 6.1(a) must be implemented in its own LE due to Lemma 5.4.1(iii).

In this example, assume that all of Lemma 5.4.1 has been fulfilled for all node pairs with

a common predecessor, except for the heterogeneous LE output constraint expressed in item

(iii). Heterogeneous outputs refer to the characteristic that an LE has one available output

to the general routing array, and one output to the next adjacent LE in a logic chain. This

constraint, coupled with the solution generated by ChainMap, creates a design that has 13

LUTs and 13 LEs. However, if non-critical routing nets can instead be implemented by chain

nets, the number of LEs can be drastically reduced by LUT pairs sharing physical LE resources.

Figure 6.1(b) shows how LEs can be formed first from node pairs {g, h} and {j, k} by

implementing edge(d, h) and edge(f, k) in chain nets. Subsequently, an LE can be formed of

{d, e} if edge(b, e) is converted to a chain net. Finally, {b, c} can share an LE if edge(a, c) is

implemented in a chain net. LEs can be formed of LUT pairs by traversing a Boolean network

in reverse topological order and identifying those that comply with Lemma 5.4.1 given a net’s

change from routing to chain. In this example, the number of LEs in the network is reduced

from 13 to 9 without disrupting solution routing depth.

ChainPack is given in Algorithm 6.1, and works by identifying LEs that can be formed from

the fanouts of each possible node for the purposes of area reduction. Network N is traversed in

reverse topological order for all t ∈ N and LEs are identified among {u, v : u, v ∈ output(t), u 6=

v} pursuant to Lemma 5.4.1. This ordering of nodes allows the output characteristics of t to be

determined before it is processed as the fanout of a node. This is important because the node’s

compliance with Lemma 5.4.1(iii) is known when it is being considered for LE membership. If t

www.manaraa.com

96

Figure 6.1 ChainPack example with 13 LUTs, (a) initial ChainMap solu-
tion with 13 LEs and, (b) after ChainPack with 9 LEs.

already belongs to an LE, no changes can be made that would cause it to violate Lemma 5.4.1.

Nets can only be converted from routing to chain, thus preserving the routing depth of the

ChainMap solution.

Algorithm 4 ChainPack

1: procedure ChainPack(N)
2: S = N − PI(N)− PO(N) in reverse topological order
3: while S 6= ∅ do
4: S = S − {s}
5: D = {v : v ∈ output(s), delay(s, v) = c} . All chain outputs of s
6: while D 6= ∅ do . While there exists chain outputs to be processed
7: Define {u, v} s.t. u, v ∈ D and u, v are a valid LE . u = ∅ occurs if no LE mate for v
8: if D − {u, v} 6= ∅ then . If this is not the last LE
9: Create s′ . The duplicate node of s

10: input(s′) = input(s) . Give s′ the same inputs as s
11: for v ∈ input(s) do . Add s′ to the inputs of s
12: output(v) = output(v) ∪ s′

13: end for
14: output(s′) = {u, v} . The duplicate sources the LE formed by {u, v}
15: input(v) = (input(v)− {s}) ∪ {s′} . Remove s′ from half of the LE
16: if u 6= ∅ then . If v has a valid LE mate u
17: input(u) = (input(u)− {s}) ∪ {s′} . Remove s′ from the other half of the LE
18: end if
19: Let s′ have the same function as s . Set the function of s′

20: D = D − {u, v} . Update duplicate set
21: end if
22: end while
23: end while
24: end procedure

ChainPack can only be applied after relaxation and duplication because it relies on a valid

netlist. Table 6.1 presents results typical of the application of ChainPack on a full-width,

global least critical relaxed ChainMap solution. The results indicate that measuring area from

www.manaraa.com

97

Table 6.1 Sample ChainPack results for full-width, before, global least
critical relaxation, K = 5.

Normal ChainPack
LUT FF LE LUT FF LE %LE

xtea 1300 189 1264 1322 189 1206 -4.81
usb 3061 1758 3301 3124 1758 3281 -0.61
rsa 1313 428 1349 1314 428 1341 -0.60

md5 2924 910 3416 2998 910 3374 -1.24
des3 area 867 9 957 885 9 874 -9.50
ethernet 242 121 299 243 121 290 -3.10
reed sol 1208 539 1210 1222 539 1202 -0.67

cfft 3835 1853 3945 3843 1853 3802 -3.76
Total 14750 5807 15741 14951 5807 15370 -2.41

%change – – – 1.36 0.00 -2.36 –

the standpoint of LUTs can be misleading if the target architecture supports the traditional

LE model. Full-width solutions can be encouraged to form more LEs through the selection of

alternative cuts with smaller node cut size, as described in Section 5.2. This has the effect of

producing more (K− 1)-LUTs, which are more likely to comply with the LE input constraints

expressed in Lemma 5.4.1(i,ii).

6.2 Hierarchical Clustering with HierARC

Inspiration for alternative clustering techniques can be drawn from other disciplines such as

bioinformatics. DNA microarrays are used to measure cellular gene expression in response to a

stimulus. While much of the underlying biology with which they are concerned is not germane

to a discussion of FPGA CAD, the general problem and solution of microarray clustering

shares many similarities to FPGA clustering. Microarrays contain thousands of data points,

each corresponding to a gene; some genes share a response pattern, while others are unrelated.

Microarray clustering groups genes together based on similar expression patterns, in much the

same way FPGA clustering seeks to group LEs together based on similar resource requirements.

HierARC, presented in [39], is a Hierarchical Agglomerative Reconfigurable fabric Clustering

www.manaraa.com

98

technique that is polynomial in run-time, deterministic, scalable with regard to scoring metrics,

and capable of easily considering multiple resource constraints. HierARC deviates from the

cluster-seed model by incorporating a bottom-up approach that merges the highest gain cluster

pair each iteration. It avoids post-application of resource constraints by considering them each

iteration. HierARC also addresses chain clustering, which is important because most commer-

cial architectures offer them as a resource, despite the lack of support in currently available

FPGA CAD tools.

Hierarchical clustering, the most commonly used microarray clustering technique, is readily

employed by FPGA CAD. Agglomerative clustering comes in a variety of flavors, but most

algorithms are derived from single-link, complete-link, and minimum-variance algorithms [44].

Though they differ in goals, the basic concept of each of these algorithms is the same: to

combine clusters that are heavily correlated using a distance function. The basic hierarchical

clustering algorithm works by merging clusters. Initially, all LEs occupy their own cluster,

corresponding to the worst case clustering solution. Iteratively, each cluster is compared to all

others, and the best cluster pair is merged into one. The new cluster’s correlation to all others

is then updated according to employed scoring functions. The process repeats until no valid

cluster pair is found. Potential cluster pairs are also subject to resource constraints, including

inputs per cluster (I), clocks per cluster (M), LEs per cluster (N), and all chain constraints.

Algorithm 6.2 presents HierARC, which has been implemented as an extension to VPR [12].

Algorithm 5 HierARC Clustering Algorithm

1: procedure HierARC(G) . Input Boolean network G = (V, E)
2: U = ∅ . Initialize set of clusters
3: for vi ∈ V (G) do
4: Ci = vi; U = U ∪ Ci . Create cluster for each LE and add to U
5: end for
6: for ∀Ci, Cj ∈ U do . Initialize gain matrix

7: gain(Cij) =
√∑m

k=1(Pk(ij))2 . Compute Euclidian gain
8: end for
9: maxij = max{P (Cij)} . Identify cluster pair with the highest gain

10: while maxij > 0 do . While there are still valid cluster pairings
11: Ci = Ci ∪ Cj ; . Create Cij by merging Cj into Ci
12: for ∀Ci, Cj ∈ U do . Update gain matrix

13: gain(Cij) =
√∑m

k=1(Pk(Cij))2 . Recompute Euclidian gain
14: end for
15: maxij = max{P (Cij)} . Identify cluster pair with the highest gain
16: end while
17: end procedure

www.manaraa.com

99

One advantage of agglomerative clustering is that it removes the undue priority placed on

the cluster seed, and the danger of choosing incorrectly. The bottom-up nature also avoids

having to partition the network and invoke depopulation to comply with resource constraints.

Instead, resource constraints can be considered on the fly. Each iteration requires a O(n2)

search for the maximum gain cluster pair, among n LEs. After the merging of two clusters

is performed, the gain of each affected cluster pair, O(n2), is re-computed. The algorithm

executes for up to n iterations, giving HierARC a complete run-time of O(n3).

In the realm of data clustering, random variables are measured for behavior correlation.

LEs in an FPGA are not correlated in the same way, thus requiring some modification to

the basic scheme. HierARC uses Euclidian distance to combine multiple performance metrics

and choose the best pair of clusters to merge. Given m performance metrics {P0, ..., Pm}

and clusters {Cg, Ch, Ci, Cj}, the Euclidian distance between pairs Cij and Cgh is given by

Equation 6.1. However, since the goal is to select the maximum gain pair, Cij must be compared

to a pair with 0 gain. If Pk(Cgh) = 0 is a no gain cluster for all 1 ≤ k ≤ m, the distance

between Cgh and Cij is given by Equation 6.2. Each metric is normalized to its maximum

value. Combining Euclidian gain with normalization allows HierARC to conveniently scale

with additional metrics.

dist(Cij , Cgh) =

√√√√ m∑
k=1

(Pk(Cij)− Pk(Cgh))2 (6.1)

gain(Cij) =

√√√√ m∑
k=1

(Pk(Cij)
maxPk

)2
(6.2)

A scoring function that facilitates clustering with an eye toward routing complexity is

presented in [15]. It judges routing cost, Rcost, via Equation 6.3 and Equation 6.4, where

x is a net with multiple terminals, α(x) is its routability weight, and the terminals of x are

denoted pins(x). The pins of a net which are visible from the general routing array (external)

are denoted ext(x), while the locally implemented (internal) portion of a net is int(x). This

nomenclature is abused for clusters, such that ext(Ci) refers to the external pins of cluster

Ci. Studies in routability have found that α(x) should increase with |pins(x)| by a non-linear

www.manaraa.com

100

factor [16]. In this manner, nets with more terminals are regarded as more difficult to route,

but when the number of pins of a net becomes sufficiently large, there is no discernible change

in difficulty as net size continues to increase. Equation 6.3 captures the condition of a floating

net, i.e. one that possess no general routing sink, by giving nets with fewer than 2 terminals

a routing weight of 0 because they have no impact on general routing cost.

α(x) =

 2− 1
|ext(x)| |ext(x)| ≥ 2

0 otherwise
(6.3)

Rcost =
∑

x∈Nets

α(x) (6.4)

HierARC uses routing cost as a metric and judges its gain explicitly, through the selec-

tion of the best merged pair, instead of implicitly through point-based resource or attraction

techniques. It explicitly identifies the best possible next state of the network by selecting the

cluster pair offering the greatest routing cost reduction. Given an arbitrary cluster pair, Cij ,

there exists a set of external nets common to both clusters, ext(Ci) ∩ ext(Cj). If Cij results

in the violation of I, M , N , or a chain constraint, then gain(Cij) = −∞, i.e. the clusters

are incompatible. If ext(Ci) ∩ ext(Cj) = ∅, then no nets would gain from the merging of the

clusters, and gain(Cij) = 0, i.e. not incompatible but undesirable.

The total change in Rcost is reflected directly by Equation 6.5. Here, net x ∈ ext(Ci) ∩

ext(Cj) is transformed to net x′ ∈ ext(Cij) by the subtraction of a pin from ext(Cj) and the

addition of a pin to int(Cij). However, if ext(x′) = ∅, Equation 6.3 yields a 0, resulting in a

α(x)−0 = 1.5 contribution to gain(Ci, Cj). This value that far exceeds that of a 3 pin external

net, possessing a score α(x)−α(x′) = 0.167. This exceedingly simple gain computation enables

HierARC to more effectively produce clustering solutions with minimal routing cost.

Proute cost(Cij) =
∑

x∈ext(Ci)∩ext(Cj)

α(x)− α(x′) (6.5)

There are many clustering tools in literature, but few are available publicly or comprehen-

sively discuss FPGA architectures used to assess solution effectiveness. However, comparison

www.manaraa.com

101

Table 6.2 MCNC Clustering, K = 4, N = 8, I = 18

Clusters Channel Width, W Wire (segments) Area (106 trans) Delay (ns)
Circuit V TV Hi V TV Hi V TV Hi V TV Hi V TV Hi

alu4 198 193 192 48.7 35.3 32.1 13622 9154 8179 2.80 1.82 1.66 112.92 80.33 77.94
apex2 241 240 242 51.5 48.4 41.0 17308 16065 14027 3.33 3.17 2.74 95.28 85.63 84.11
apex4 163 165 166 46.9 50.2 45.2 10340 10646 9900 2.04 2.17 2.00 90.30 84.34 84.79
bigkey 214 214 226 37.0 24.2 13.4 14689 11670 9080 6.83 4.61 2.77 80.90 87.27 92.06
clma 1056 1055 1051 74.8 63.6 47.3 92934 81496 60476 20.05 17.30 13.00 379.63 351.31 387.73
des 204 200 200 32.6 21.0 16.9 18031 15862 13445 8.47 5.71 4.72 179.49 221.71 170.50

diffeq 188 189 199 29.7 28.6 19.1 7740 7081 5041 1.54 1.49 1.20 68.19 58.11 70.60
dsip 198 172 226 38.5 21.1 11.9 15536 11165 8422 7.11 4.11 2.52 86.51 74.64 86.48

elliptic 453 454 497 59.6 51.8 37.0 30709 27997 18091 7.16 6.31 5.00 132.96 160.00 154.04
ex101 595 601 595 56.2 57.2 41.3 42364 40160 31967 8.76 9.00 6.75 220.91 253.19 204.45
ex5p 136 138 139 44.8 46.7 40.8 8722 9129 8190 1.69 1.76 1.56 87.38 79.01 72.26
frisc 448 446 454 57.6 52.6 40.6 31632 28384 22407 7.01 6.50 5.10 175.96 179.22 166.07

misex3 178 179 177 43.7 39.5 36.7 11131 10055 8884 2.21 2.05 1.91 84.86 93.12 93.24
pdc 593 582 586 83.4 73.7 66.8 58683 50531 45110 12.83 11.46 10.36 231.21 259.28 226.93
s298 246 243 242 45.2 32.2 25.9 13592 8820 7308 2.95 2.15 1.76 135.75 125.71 125.33

s38417 803 802 820 44.4 37.7 25.1 42035 35689 23266 9.27 8.01 5.48 192.07 161.57 151.91
s38584.1 806 806 889 38.2 37.2 25.1 36178 35994 19947 8.13 8.00 5.93 200.36 179.03 315.40

seq 223 221 221 51.7 47.9 40.4 15639 13762 12326 2.96 2.78 2.40 93.52 79.37 85.20
spla 476 469 470 74.4 58.3 54.5 43529 33523 29143 9.00 7.03 6.63 228.66 206.71 167.20

tseng 132 133 141 31.2 27.7 16.6 5891 5168 3023 1.20 1.08 0.69 54.59 46.01 50.30

Total 7551 7502 7733 990.1 854.9 677.7 530304 462351 358232 125.34 106.51 84.20 2931.44 2865.55 2866.54

%change 2.41 3.08 – -31.55 -20.73 – -32.45 -22.52 – -32.83 -20.95 – -2.21 0.03 –

against T-Vpack using VPR [12] PNR results is ubiquitous. Therefore, a baseline of perfor-

mance can be established by comparing HierARC against T-Vapck using an FPGA architecture

similar to that used in [15]. Table 6.2 presents clusters, routing channel width (W), total rout-

ing wire segments, transistor area with buffer sharing, and critical path delay (Tcrit). The

FPGA device under test uses single-length segments, Fcinput = Fcoutput = 1, with net and

timing driven place and route. To get an accurate picture of performance, 20 independent

PNR experiments of each MCNC circuit have been performed, and normalized to the Hier-

ARC result. This more closely ascertains the expected result obtained in a real-world design

process, wherein a designer usually accepts the first PNR solution produced by a CAD tool.

Results indicate that HierARC performs substantially better in most categories than Vpack

or T-Vpack. HierARC uses slightly more clusters, although number of clusters is a misleading

metric, as most clustering tools tend toward full cluster utilization though research has shown

that underutilization of clusters can actually improve design routability [71]. HierARC achieves

www.manaraa.com

102

Table 6.3 Approximate Comparison to Published Results

[58] RT-Pack[47] [47] iRAC+iRAP[67]
W Tcrit W Wire W Wire W Wire Area

%Other -15.38 -0.85 -5.56 -4.25 -19.44 -17.77 -23.40 -19.98 -24.26
%HierARC -20.73 0.03 -20.73 -22.52 -20.73 -22.52 -20.73 -22.52 -20.95

average channel width reductions of -32% and -21%, total routed wire length reductions of -

33% and -23%, and transistor area reductions of -33% and -21%. The average critical path

delay change produced by HierARC is negligible at -2.2% and +0.03%. This is a byproduct

of the 1-D routing gain function currently employed. HierARC is easily extended to multiple

performance metrics and work is currently being performed to consider timing and power

consumption in addition to routing cost.

Table 6.3 creates an approximate context for HierARC performance. Although tool avail-

ability and exact experimental parameters are often limited, published results indicate that

HierARC performance meets or exceeds other tools. The results in Table 6.3 are only to be

used as an approximate comparison of performance because of the high variability in target

FPGA architectures, PNR settings, and metrics. In each case, performance is measured in

percent change relative to T-Vpack. It should be noted that all of the results in Table 6.3 are

based on K = 4, N = 8, and in most cases I = 18 ([47] uses I = 32). Additionally, RT-Pack

results obtained from [47] (thus using I = 32) concur with those in [15] and are included

because they present wire length.

Clustering chains presents challenges because LEs in the same chain typically have very

low commonality to each other. For example, a 32-bit adder uses 64 operand bits that are

often independent and travel in parallel via a datapath through the circuit. Chains largely

lack the freedom to choose other members of their cluster, but can be segmented to maximize

what commonality they do possess. Segmenting is the process of partitioning a chain into

pieces which are completely contained within clusters, subject to the resource constraints of

the architecture. Each LE that is part of a chain must comply with the following rules:

1. Each cluster can only contain one chain head segment.

www.manaraa.com

103

2. Each cluster can only contain one chain tail segment.

3. Non-contiguous members of the same chain are not allowed in the same cluster.

4. If preempting the merging of chains, each cluster can only contain either a head or a tail.

The chain rules are designed to observe port availability constraints and can be modified

accordingly for non-traditional clusters, such as those possessing a multiple-port chain. Because

there is only one cin/cout port pair available, each cluster can only contain one head and one

tail unless they belong to the same chain (a condition corresponding to an intra-cluster chain).

Second, non-contiguous LEs in the same chain are not allowed to reside in the same cluster to

prevent chain interruption. Finally, if preempting the merging of chains, clusters can contain

either a head or a tail from separate chains, but not both. If a head from one chain and a tail

from another are allowed to join the same cluster, a de facto chain is created by the merging

of two chains, as in Figure 6.2(d) where chains A and B have merged. In general, increasing

the number of cluster chains decreases the freedom of the PNR tool.

Chains are handled by HierARC in one of three ways: cluster chains from head to tail

individually before free LEs subject only to resource constraints, cluster each chain individually

before free LEs according to gain, or allow chain LEs to be clustered at the same time as logic

LEs. Chains reduce the number of possible clustering solutions, but can be segmented into

clusters by gain to minimize their cost and observe cluster constraints. HierARC has the option

of applying the default segmentation of chains (head to tail), or by allowing them to be decided

by gain. HierARC does not require the formation of contiguous segments, i.e. segments are

allowed to contain empty LEs, those which simply pass values along the chain. Clustering

chains has the following concerns:

1. Enable the formation of intermediate segments that comply with traditional values of I.

2. Limit the use of empty LEs.

3. Use chains with minimal segments when possible.

4. Avoid merging cluster chains whenever possible.

Clustering chains has implications on the value I. As has been previously discussed, every

www.manaraa.com

104

LE input does not have to access the general routing array, as per Equation 6.9. Instead,

local routing allows some inputs to be completely routed internally, with 98% logic utilization

achievable using Equation 6.6 [4]. For chains, the value of I is strongly dependent on the

maximum number of inputs required by a chain. Typically, all of the chain inputs are external

to the cluster because the LEs in a chain typically possess very few nets in common. Two

types of chains can be formed, full-width and sub-width (e.g. arithmetic) [38], and each have

a different effect on I.

The worst case value of I for a chain segment with N full-width LEs occurs when the head

of a chain requires K inputs, and the subsequent N−1 LEs require K−1 inputs (Equation 6.8).

Likewise, for sub-width LEs, the head of a chain requires K − 1 inputs, and the subsequent

N−1 LEs require K−2 inputs (Equation 6.7). For architectures to accommodate all chains in

a default clustering, they have to subscribe to either Equation 6.8 or Equation 6.7, regardless

of Equation 6.6.

Inorm =
K

2
· (N + 1) (6.6)

Isub = (K − 2) · (N − 1) +K − 1 (6.7)

Ifull = (K − 1) · (N − 1) +K (6.8)

Iall = K ·N (6.9)

Empty LEs can be used to give chains the latitude to use clusters designed with Equa-

tion 6.6 in mind. In most FPGAs, the chain logic is highly optimized, and contributes negligible

wire and logic delay to a design. To allow chains to comply with an input-limited cluster, LUTs

can be configured as buffers and simply pass chain values. While this may increase the de-

lay of the design, a design that uses a higher value of I will have a more complex routing

array, as each input pin on a cluster generally requires 30 or more support general routing

wires [43]. Because empty LEs have no inputs beyond the chain logic, they contribute a delay

commensurate to the chain logic, instead the entire K-LUT.

The chain in Figure 6.2(a) is contiguous and it occupies the minimum number of clusters,

www.manaraa.com

105

Figure 6.2 Clustering a chain for L = 10, N = 4.

but its head does not necessarily occupy the entire first cluster. A chain that is clustered

contiguously has
⌈

L
N

⌉
segments. Chain A in Figure 6.2(b) has two empty LEs, its head does

not occupy the entire first cluster, and it occupies an extra cluster. This situation could arise

if I limits the number of chain members per cluster or gain dictates an alternative solution.

Allowing chain LEs to be clustered concurrently with logic LEs potentially increases the

number of intra-cluster chains. The reason for this is that each LE within a chain has very low

commonality to adjacent chain LEs and much higher commonality to other LEs. Accordingly,

when chain LEs which are part of the head or tail of chain are clustered, they tend to join

non-chain LEs and result in solutions requiring more than the minimum number of segments.

Figures. 6.2(a,c) depict the effect of clustering chains first versus clustering them concurrently

with non-chain LEs. Aside from tending to increase intra-cluster chains, concurrent clustering

also increases the prevalence of empty LEs.

To lower the occurrence of chain clusterings with non-minimal segments, HierARC includes

a user option to cluster chains first, and independent from one another. Each LE chain in the

design is clustered according to the HierARC algorithm, with the exception that only LEs

within the same chain are considered, and the gain of each chain LE relative to all other LEs

residing outside its chain is −∞.

Another method to encourage the formation of minimal chains is the addition of a chain

bias factor to Equation 6.5, resulting in Equation 6.10. This tie breaking system is similarly

structured to the T-Vpack timing-based scoring function [12]. It employs a scaling factor,

www.manaraa.com

106

Figure 6.3 Tie breaking a chain for L = 10, N = 4.

ε ≈ .01, that uses the contiguous distance from terminus, Dterm as a tie breaker. Distance

from terminus is computed as the maximum number of LEs which the merged cluster will

connect to either the head or tail of the chain. A terminus is not simply the cluster containing

either end of a chain, but also the clusters which extends it; if the cluster containing an

end cannot be merged with the next consecutive cluster in the chain, that cluster is also

considered a terminus. Figure 6.3 depicts this as Dterm(C1, C2) = 6, where C0 and C1 are

assumed not compatible due to resource constraints. Because C0 and C1 are adjacent, but not

compatible, C1 is regarded as a terminus, and {a0, ..., a5} is 6 LEs in length. In this situation,

where Dterm(C1, C2) > Dterm(C1, C2), the preferred solution is that which creates the longest

contiguous cluster chain. This encourages minimum chain segments and fewer empty LEs.

Pchain(Cij) = Proute cost(Cij) + ε ·Dterm (6.10)

Table 6.4 shows results for clustering chains head first (head1st), first (chain1st), and at

the same time (during) as arbitrary LEs for designs from [62], and normalized to head first.

Allowing non-traditional clustering produces a 11.6%-26.1% increase in the number of clusters

each chain spans, and average chain length by 5-11 LEs. Clustering head first is by far the

best solution when considering only chain lenght and empty LEs. When K = 4, the number

of inputs required to support a sub-width chain is one less than the normal cluster inputs,

Isub = 17 < 18 = Inorm. This indicates that the clustering solution should accommodate

chains without empty LEs and with minimum number of segments. This is not reflected in

Table 6.4, because the scoring function used by HierARC has not deemed it to be the most

routing cost advantageous solution and Inorm does not accommodate the sophisticaed D flip-

flops (DFFs) present in real-world designs which contain asynchronous and synchronous FF

www.manaraa.com

107

Table 6.4 OpenCores Clustering, K = 4, N = 8, I = 18

Chains Segments Ave. LE Len. Empty LEs
Circuit - Head 1st Chain 1st During Head 1st Chain 1st During Head 1st Chain 1st During

cfft 61 264 279 306 30.0 31.5 32.3 77 166 220
xtea 10 40 40 49 30.5 31.2 32.4 6 13 25
usb 36 41 46 80 7.9 7.9 9.1 0 0 44

mult3x3 12 42 48 54 22.3 24.3 27.3 0 24 60
jpeg 85 239 310 325 20.2 22.8 24.0 0 224 321

sha512 20 146 146 177 58.2 58.2 61.1 0 0 58
fir 24 72 73 73 17.5 17.5 17.7 0 0 5

Total 248 844 942 1064 24.1 25.5 26.8 83 427 733
%change – – 11.6 26.1 – 5.7 10.9 – 414.5 783.1

controls, which increase I. More comprehensive PNR experiments are necessary to justify

the increase in empty LEs and segments due to deciding chain segmentation by gain, and are

left as future work. However, the HierARC technique does accommodate chains regardless of

wheteher or not I accommodates contiguous chains.

6.3 Summary

ChainPack is presented as a method for reducing technology map LE consumption by

using chains. Chains can be viewed not only as a single-fanout high-performance interconnect

structure, but also as a dual-fanout connection between adjacent LUTs. That being said, it

can be used to identify and implement two LUTs that comply with the exclusivity constraint

within the same LE, thus reducing the total number of LEs in the network. Sample ChainPack

results for K = 5 indicate an average 2.36%, maximum of 9.5%, LE consumption savings over

an unpacked relaxed solution.

HierARC [39], a Hierarchical Agglomerative Reconfigurable fabric Clustering tool, is de-

terministic, has a polynomial run-time, scalable with respect to incorporating performance

metrics through Euclidian distance, and can easily accommodate resource constraints without

post-processing techniques such as cluster depopulation. Using only routing cost as perfor-

mance metric, results indicate reductions in channel width (-21%), wire length (-23%), and

transistor area (-22%) with minimal critical path change (+0.03%) relative to T-Vpack. The

www.manaraa.com

108

neutral improvement in delay is due to its current lack or a timing metric. However, HierARC

easily supports the inclusion of metrics such as timing, power consumption, and fault tolerance.

As evidence of its ability to accommodate clustering constraints during execution, the

problem of clustering chains has been presented. No published solutions to this problem are

evident in literature, as the popular approach seems to be acceptance of a default clustering

wherein the head of a sub-width chain occupies the first LE in a cluster, and all consecutive

LEs are clustered contiguously. Such an approach does not take into account the performance

impact of chains, allow for generic logic chains [38] to be clustered effectively, or subject chains

to resource constraints. In effect, chains are allowed to dictate architecture, rather than the

architecture dictating chain clustering solutions. This work presents an initial foray into chain

clustering that indicates HierARC is able to produce chain clusterings with an average chain

length increase of 5-11 LEs.

Using T-Vpack as a common point of reference for published clustering tools, HierARC

produces results that meet or exceed those of other tools. HierARC’s performance, coupled with

its flexibility, determinism, polynomial run-time, and on-the-fly resource constraint accounting,

makes it a viable solution to clustering for FPGAs. Together, ChainPack and HierARC produce

technology mapped logic chain solutions with reduced area and higher routability.

www.manaraa.com

109

CHAPTER 7. CHAINMAP FULL DESIGN FLOW EXPERIMENTS

To test the performance of ChainMap, a complete FPGA design flow is necessary so that the

effects of using logic chains can be fully ascertained. Unfortunately, there is no academic design

flow for FPGAs that supports arithmetic chains, let alone generic logic chains. Conversely,

commercial tools are highly proprietary in nature. The Xilinx ISE design flow is difficult to

use directly or with third-party tools. The Altera Quartus II flow is relatively open, allowing

academic users to substitute for various parts of the flow including synthesis and technology

mapping, but its target architecture is restricted to Altera products. The Stratix architecture

is the only one capable of supporting any type of ChainMap flow, in particular sub-width logic

chains for K = 4.

The standard academic design flow consists of SIS [66] and RASP [24] technology mapping

or ABC [59] synthesis/mapping, T-Vpack clustering, and VPR place and route [12]. All in

all, these are useful open source tools, but none of them support chains internally. Therefore,

they need to be augmented to support logic chains. A Quartus II VQM netlist will be used

to identify macro generated arithmetic chains and coarse grained components from HDL and

designate them to SIS. Using the reuse cell design of Chapter 3, the performance of ChainMap

will be presented across a variety of experiments and metrics:

• Publicly available HDL-based benchmarks from OpenCores [62].

• Performance assessment using metrics including depth, critical path clock frequency,

area, routing utilization, and area-delay product.

• LUT sizes of 4 to 6 inputs to encompass all commercial FPGA logic widths.

• Insertion of arithmetic chains before technology mapping, after mapping, and complete

disregard of HDL after elaboration.

www.manaraa.com

110

• Least critical branch trimming and global least critical relaxation.

• Path and net timing driven routing metrics.

SIS and RASP have been chosen because they support FlowMap, which is the inspiration

for ChainMap. T-Vpack will be abandoned in favor of HierARC, as Section 6.2 has shown it

can produce solutions with more than a 20% improvement in routability while also accepting

chains and sophisticated FFs. VPR will be modified to handle chains and FFs. The range

of testing conditions provides ample opportunity to test ChainMap designs for a variety of

architectures and CAD parameters.

7.1 Testing Methodology and Architecture Description

The testing methodology will be the same as in Section 5.6, except that the entire design

flow will be tested. This includes the addition of least critical branch trimming and global

least critical relaxation techniques, clustering with HierARC (Section 6.2), and a placement and

routing with a modified version of VPR. In this manner, a full accounting can be taken of using

ChainMap to decide chains versus traditional HDL-based arithmetic chains. Figure 5.5 depicts

the augmented design flow; the elaboration, synthesis, and initial technology mapping stages

remain identical to Section 5.6. After technology mapping, the ChainMap flows are relaxed

according to least critical branch trimming and global least critical relaxation techniques,

followed by ChainPack. FlowPack is then applied to all non-chain Boolean nodes. All flows are

then clustered with HierARC and placed and routed by VPR using two different architectures,

fixed-size and scaled.

A cluster size of N = 8 is used because it is the most common amongst commercially

available architectures. Clusters with 8 LEs possess 23% less delay and use 14% less area

relative to clusters with N = 1, representing the best area-delay balance among clusters sizes

in the range of N = [3, 20] [57]. The number of inputs per cluster is Inorm = K
2 · (N + 1), with

the exception that each cluster will be granted four additional inputs to provide capacity for

a subset of the FF control signals (aload, sload, dload, aclr, sclr, clken). The four additional

inputs allow for designs to contain one load and its data input (synchronous or asynchronous),

www.manaraa.com

111

Figure 7.1 Experimental Design Flows

www.manaraa.com

112

one clear (synchronous or asynchronous), and the clock enable. FFs using all six asynchronous

and synchronous control signals are rare, so they must compete for cluster inputs with standard

data inputs. The MCNC benchmarks upon which Inorm is established in [4] do not contain

sophisticated FFs and thus capacity for them must be added to ensure reasonable clustering

solutions. Chains will be clustered according to the default head-first technique, wherein they

are mapped from head to tail individually and are only subject to resource constraints.

The routing architecture will be fashioned after the Stratix II, which offers routing seg-

ments of 1, 4, 16, and 24 clusters. VPR features a binary-search parameterizable architecture

that enables researchers to perform experiments which measure solution performance with the

minimum amount of resources available. The scaled architecture tailors the cluster array size

to the minimum required to accommodate I/O pads or clusters. Placement occurs as normal,

but routing is done according to a binary search for minimum channel width. The minimum

channel width is the minimum number of tracks which are necessary to successfully route the

design. For the fixed architecture, the array size is limited 34 x 34 clusters, which is the

minimum size chip necessary to accommodate the maximum number of I/O pads and clusters

found in the benchmark set (des3 area I/O pads). The routing channel width will be set to

60 tracks per channel to accommodate all minimum channel width requirements. Because the

array size will be at most 34 x 34 clusters, segment lengths are scaled to segments of 1,2,4,

and a long line spanning the entire chip. Using the iFAR design repository [49], a 65nm based

architecture (the feature size of Stratix II) has been constructed that is characterized by the

timing parameters in Appendix 8.4.

7.2 Tool Development

To test complete designs that contain arithmetic chain constructs, the SIS synthesis tool

requires the ability to input arithmetic chains and support them within its internal netlist

format. Furthermore, the ChainMap and relaxation algorithms have been implemented in

SIS/RASP along with improvements for FFs. The additions/alterations to the SIS command

library are as follows:

www.manaraa.com

113

• read stratix[−p < file.vqm >]

• read blif , write blif - The input and output netlist formats are augmented to describe

chains and LEs. Additionally, the SIS latch has been granted full FF functionality.

• insert chains, remove chains - Chains can be removed and inserted into the netlist at

any time.

• flowmap[−C < K >,−A < g|b|l >] - The invocation of ChainMap using K-width chains

and duplication algorithm global least critical relax, least critical branch trimming, or

shallowest logic depth branch trimming.

QUIP allows designers to modify steps of the FPGA design flow through providing access

to the VQM or BLIF netlist products of Quartus II synthesis and technology mapping. To

implement an HDL-aware netlist in SIS internal representation, QUIP will be used to elaborate

the HDL. A VQM netlist parser has been created for SIS that will take the technology map

output of Quartus and input it to SIS internal netlist format. The VQM parser is invoked using

the read stratix command. Arithmetic chains can be alternately preserved, read stratix− p,

or allowed to become part of the logic network, read stratix.

Each LE in the VQM netlist, with ports as defined by Figure 7.2, is implemented in SIS

pursuant to its Stratix functionality. LEs in normal operation mode are implemented as simple

logic nodes with their function defined by an lut mask. Each SIS node has the equivalent of a

combout port. Arithmetic LEs have to be handled such that their functionality and mapping

are both preserved. The arithmetic mode Stratix LE, in Figure 7.3(a), is implemented in the

SIS internal netlist representation as the pair of (K − 1)-LUTs shown in Figure 7.3(b), one

for the cout computation and one for sum. Dynamic add and subtract, inverta, is explicitly

implemented as an XOR gate combining dataa and inverta, the output of which serves as an

input to the LUT. The combinational mode of the LE is implemented as in Figure 7.3(c).

If chains are to be preserved with read stratix− p, any LE making use of either its cin or

cout port is considered part of an arithmetic chain and is partitioned into a separate network.

Arithmetic chain partitioning in SIS is depicted in Figure 7.4(a) and is also invoked using the

command remove chains. All inputs to the chain are output from the logic network with

www.manaraa.com

114

stratix lcell <lcell name>
(

.clk(<clock source>),

.dataa(<data a source>),

.datab(<data b source>),

.datac(<data c source>),

.datad(<data d source>),

.aclr(<asynchronous clear source>),

.aload(<asynchronous load source>),

.sclr(<synchronous clear source>),

.sload(<synchronous load source>),

.ena(<clock enable source>),

.cin(<carry in source>),

.inverta(<inverts .dataa into the lut>),

.combout(<combinational output>),

.regout(<registered output>),

.cout(<carry output>)

);
defparam <lcell name>.operation mode = <operation mode>;
defparam <lcell name>.synch mode = <synchronous usage mode>;
defparam <lcell name>.sum lutc input = <sum lut input choice>;
defparam <lcell name>.lut mask = <lut mask>;

Figure 7.2 Stratix cell primitive.

Figure 7.3 (a) Stratix primitive, (b) SIS arithmetic LE, (c) SIS combina-
tional LE

www.manaraa.com

115

POs and input to the chain network with PIs. Likewise all external outputs of the chain

are output from the chain network with POs and input to the logic network with PIs. In this

manner, the logic network can undergo technology decomposition, SIS synthesis, and FlowMap

or ChainMap technology mapping, while the chain network is preserved. The chain and logic

networks can be recombined at any point in the flow with insert chains, yielding a unified

netlist.

Another reason for the integrated Quartus/SIS design flow is that more complex designs

also contain memory, multipliers, register controls, and clock synthesis structures for imple-

mentation in dedicated or specialized FPGA components: RAM (RAM) modules, digital clock

managers (DCMs), and carry chains. RAM, DCMs, and dedicated multipliers are extracted

from the VQM netlist and treated as black box I/O modules to the system that are inter-

faced with PIs/POs. Figure 7.4(a) shows how black box components are extracted from SIS

and how arithmetic chains are partitioned from the logic network. To more closely model the

capabilities of commercial architectures, the SIS latch has been upgraded to incorporate full

flip-flop functionality, including asynchronous load/clear (aload, aclr), synchronous load/clear

(sload, sclr), and clock enable (ena). Valid SIS latch behaviors are rising edge, falling edge,

active high, or active low.

As per Definition 5.3.3, a chain can be described as a set of contiguous nodes possessing

the same routing depth. For a netlist that adheres to the exclusivity constraint, synthesis

and technology mapping chains can be designated to the clustering and PNR engines using a

modified BLIF that specifies the chain’s “backbone” and ancillary LE mates. The backbone

consists of all depth-increasing cout nodes identified through HDL or ChainMap. Each LE

consists of a pair of nodes, one of which must be the cout node present in the backbone, and

the other its accompanying sum node. For LEs operating in (K − 1)-LUT mode (Figure 3.1),

cout 6= sum. If an LE is operating in K-LUT mode, sum = cout. Note that the terms cout

and sum only refer to a node’s connectivity with respect to LEs and chains, and do not imply

its Boolean function is the traditional sum or carry out of a full adder.

www.manaraa.com

116

(a) SIS Chain (b) BLIF Description

Figure 7.4 SIS arithmetic chain with black box module partitioning and
BLIF representation.

www.manaraa.com

117

The chain backbone of carry propagation is modeled in BLIF format through the “.chain”

and “.le” descriptions. Figure 7.4(b) shows an example BLIF representation of the adjoining

arithmetic chain network. The chain description contains all of the cout nodes in the chain

from head to tail. To model LE associations, the .le primitives map each node in the chain

definition to a sum node. The chain/LE specifiers do not change how the nodes of the chain

are modeled by SIS, but simply provide ancillary connectivity and grouping information. This

BLIF definition also shows how a chain network is protected from synthesis by remove chains.

After SIS synthesis and ChainMap/FlowMap technology mapping, the network is clus-

tered, placed, and routed. HierARC (Section 6.2) is designed to cluster arbitrary LEs and

chains through cluster merging, as outlined in Section 6.2. VPR has been augmented to read

the modified BLIF netlist and represent chains and FFs in its “.net” netlist format and has

been augmented to handle chains according to the modifications outlined in Section 2.2.4 to

emulate commercial FPGA architectures and intelligently handle chains. Full FF functionality

is included in HierARC and VPR by treating these signals as ordinary nets, not specialized

control signals that use global routing structures as do clocks. The modifications to VPR are

summarized as:

• HierARC has been implemented in VPR v4.30 and given a BLIF netlist parser.

• The VPR netlist (.net) format has been augmented to describe chains and FFs.

• VPR’s internal connectivity, timing, and routing graphs have been augmented to support

chains with placement following [8].

• VPR FFs have been augmented with standard control signals, which are treated the

same as cluster data inputs.

• VPR has been augmented to model LE capability, i.e. two (K − 1)-LUTs.

• VPR has been improved to perform independent PNR experiments rather than generate

single solutions, allowing more accurate data collection.

• HierARC clusters chains individually from head to tail and before arbitrary LEs.

www.manaraa.com

118

VPR has been augmented to accommodate chains pursuant to the technique outlined in [8],

as well as given several other useful features. This includes netlist definition with the “.chain”

construct, integration with the connectivity, timing, and routing graphs, sophisticated FF

handling, chain placement, and independent experiment generation and data collection. One

reason VPR doesn’t support carry chains is that its resource graph does not model them. A

chain connection can be modeled with a delay-less switch that connects the output pin of a

source node directly to the input pin of a sink node. To make use of chains, the routing resource

graph incorporated by VPR [12] has been altered to provide chain connectivity between source

and sink nodes; the routing array in Figure 7.5(a) is represented as 7.5(b).

Figure 7.5 Alterations to the VPR routing resource graph.

A chain is a dedicated connection between LEs, which requires that it must connect both

adjacent LEs residing in the same cluster and those in different clusters. Routing resource

graphs do not have to model intra-cluster chain connections because they only model the

connectivity of the general routing array and clusters. The inter-cluster chain connections are

modeled as a connection between a cluster output pin (OPIN) and a cluster input (IPIN) that

bypass routing tracks. Correspondingly, non-chain connections are precluded from using this

routing structure, as they are not necessarily compliant with the unique constraints imposed by

www.manaraa.com

119

chains. Clusters that are connected via a chain, as specified by the input netlist, can only use

this dedicated routing resource and do not have the option of using general routing resources.

To model the timing of an LE with the cout and sum LUTs present in chains, the timing

graph must allow each LE to have multiple outputs that potentially depend on a different set

of inputs. In an LE, the cout and sum nodes must be separated because their output edges

are separate. The cout node is purely combinational and its output only connects to the cin

input of the next node in the chain. The sum node can operate in either combinational or

sequential mode, therefore, it can either serve as the output of the LE or connect to the FF

sink. Synchronous control signals connect directly to the FF sink node with the combinational

output, while asynchronous control signals connect to the FF source along with the clock.

For example, the circuit in Figure 7.6(a) contains a chain consisting of LEs {a, b, c}, and

LEs {c, d} are operating in sequential mode. LEs {a, b} have cout nodes because they connect

directly to the cin nodes of {b, c}, respectively. The delay of edge (acout, bcin) is a user defined

parameter, akin to the wire delay of a chain (≈ 0ps), while the delay of edges (acout, bcout)

or (acout, b), user defined parameters, correspond to the logic delay of a chain, i.e. a 2:1

multiplexer. Conversely, the combinational output of LEs {a, b} link directly to the output

pads {out0, out1}, respectively. Note that timing graph I/O pads are actually implemented as

two nodes each, such that the edge connecting them models their delay because nodes have no

delay. Figure 7.6 does not reflect this for sake of simplicity.

The combinational output of LEs {c, d} are handled differently, as the LEs operate in

sequential mode. They connect to FF sink nodes, {cD, dD} with a delay corresponding to the

setup time of the FF, Tsu. The synchronous signals also drive the FF sink nodes to provide

clear and preset capability via a user defined timing parameter. To isolate combinational

paths (avoid loops), the FF sink and source nodes are not connected via an edge. Instead the

FF source generates the output with a delay after the clock arrives (clock-to-out), Tco. This

also holds true for the asynchronous control signals, which generate a FF output after a user

defined delay similar to Tco. For added timing accuracy, intra-cluster connections between

www.manaraa.com

120

Figure 7.6 Alterations to the VPR timing graph.

www.manaraa.com

121

LEs are also modeled by VPR. The modified chain timing graph models intra-cluster and

inter-cluster chains with potentially different edge latency values.

7.3 Fixed Architecture Performance Assessment

Fixed architecture place and route performance results for ChainMap solutions are mixed,

as given by Figures 7.7(a) and 7.7(b). In some cases, speedups of up to 1.26x are witnessed,

while in others performance is reduced to 0.67x. Global least critical relaxation (critical) tends

to produce more consistent results, while least critical branch trimming (trimming) can offer

greater speedup to many circuits, but tends to suffer more severe performance degradation in

other cases. Performance increases with K, as more sub-width arithmetic operations are able

to be packed into wider LUTs.

(a) Global least critical relaxation (b) Least critical branch trimming

Figure 7.7 Speedup, N = 8

It is not immediately clear why ChainMap solutions suffer from performance degradation,

but a look into routing utilization reveals some characteristics of ChainMap solutions. Two

routing metrics under consideration are channel width (W) and total wire length. Channel

width specifies the maximum number of tracks required by each routing channel necessary to

route the design. It is a useful indication of routability, as the more tracks per channel, the

more each cluster is dependent on other clusters within the array. Total routed wire length is

www.manaraa.com

122

the sum of all routing paths, in 1-unit segments, contained in the circuit. Wire length gives

an indication of the size of the circuit and also of its connectivity. Higher total wire length

can be an indication of overall circuit size, as the more clusters a design has, the larger its

average diameter, and further the distance between any given cluster pair. It is also indicative

of the connectivity of a design, such that clusters using more external pins are harder to place

relative to the clusters they source/sink connections to/from. This results in increased use of

the general routing array because of the the pure number of connections each cluster has to

make and/or poor locality to other clusters. Ratios of channel width or wire length that are

less than 1 indicate resource savings.

Figures 7.8(a) and 7.8(b) indicate mixed PNR routability results for ChainMap. Maximum

channel width ranges from 0.8x-1.2x, with the average change being 1.05x. Likewise, total

routed wire length, given by Figures 7.9(a) and 7.9(b), gives results in the range of 0.8x-1.8x,

with the average change in wire length being a 1.1x increase. This is indicative of the increase

in cluster connectivity prognosticated by cluster pin utilization. While increased pin utilization

does not manifest as acutely in channel width, the total wire length results indicate consistent

increases. The after flow, whose solutions most emulate HDL, yield the best routability

results, in the average case resulting in neutral to reduced wire and channel width. The before

and forget flows fall victim to the increased cluster pin requirements.

(a) Global least critical relaxation (b) Least critical branch trimming

Figure 7.8 Channel width, N = 8

www.manaraa.com

123

(a) Global least critical relaxation (b) Least critical branch trimming

Figure 7.9 Total routed wire length, N = 8

Table 7.1 Routing complexity for OpenCores Benchmarks, K = 6, critical

Normal Before Forget After
Circuit Clusters Nets Rcost Clusters Nets Rcost Clusters Nets Rcost Clusters Nets Rcost

xtea 81 704 1040.9 83 654 1012.1 89 604 971.0 80 704 1040.7
usb 352 1575 2532.8 355 1581 2564.7 352 1587 2574.6 352 1594 2569.9
rsa 123 847 1277.9 119 741 1174.9 121 706 1142.4 121 822 1246.0

md5 255 1316 2022.6 283 1541 2416.3 292 1452 2317.6 283 1539 2357.8
des3 area 54 676 1051.1 54 676 1051.1 54 676 1051.1 54 676 1051.1
ethernet 36 203 320.3 34 202 326.1 34 203 327.6 34 203 324.3
reed sol 158 586 973.8 140 504 847.5 140 506 850.4 141 507 851.9

cfft 428 3224 4766.3 412 2576 4137.4 424 2591 4154.2 408 3229 4773.1
Total 1487 9131 13985.7 1480 8475 13530.2 1506 8325 13388.9 1473 9274 14214.8

%change – – – -0.47 -7.18 -3.26 1.28 -8.83 -4.27 -0.94 1.57 1.64

Figures 7.8 and 7.9 indicate that ChainMap solutions have difficulty realizing their poten-

tial performance during PNR due to a decrease in routability. The primary contributors to

increased routing complexity are an increase in the total number of nets, higher fanout per net,

cluster connectivity, and architectural constraints such as chains. Tables 7.1, 7.2, and 7.3 give

a pre-routing estimate of complexity as judged by number of clusters, number of nets, routing

cost as computed with Equation 2.10 (Rcost, which captures fanout per net), total inter-cluster

chains, average cluster/LE chain length (Lcluster, LLE), and external cluster pin utilization for

(K = 6, critical).

www.manaraa.com

124

Table 7.2 Chain utilization for OpenCores Benchmarks, K = 6, critical

Normal Before Forget After
Circuit ChainsLcluster LLE ChainsLcluster LLE ChainsLcluster LLE ChainsLcluster LLE

xtea 9 4.33 29.90 14 3.00 9.10 8 2.25 5.72 9 8.89 29.90
usb 5 2.00 7.86 0 – 3.06 0 – 3.02 5 70.40 5.38
rsa 8 5.00 33.50 14 2.57 8.29 10 2.00 5.56 8 15.13 30.11

md5 8 4.00 29.11 13 2.69 4.84 10 2.30 3.80 8 35.38 6.36
des3 area 0 – 5.00 0 – – 0 – – 0 – 5.00
ethernet 2 2.00 11.33 0 – 3.00 0 – 3.00 2 17.00 5.27
reed sol 0 – 5.00 0 – 3.00 0 – 3.00 0 – 3.24

cfft 52 4.71 28.74 40 5.48 6.69 39 4.33 6.68 52 28.33 28.32
Total 84 4.40 22.28 81 2.70 5.76 67 2.52 4.84 84 4.40 12.83

%change – – – -3.57 -38.62 -74.17 -20.24 -42.73 -78.29 0.00 0.00 -42.41

For the most part, the routability factors indicate that ChainMap solutions exhibit very

good characteristics, with average reductions in clusters, nets, and routing cost commonplace.

Furthermore, the number of inter-cluster chains, and both Lcluster and LLE indicate that

ChainMap solutions contain fewer overall chains as well as ones that are significantly shorter

and often contained completely within clusters. Table 7.2 shows that the number of inter-

cluster chains decreases in each case by -3.6% and -20.2% for before and forget, respectively,

and the length of such chains is significantly reduced by about -40% in terms of clusters, and

-76% in terms of LEs. These results indicate that placement in Chainmap solutions is generally

easier with regard to honoring inter-cluster chain relationships. Fewer intra-cluster chains give

the clustering tool more flexibility, as fewer LEs are required to be grouped together. Likewise,

fewer inter-cluster chains give the placement engine more freedom with which to swap clusters.

While resources, cost, and chain factors favor ChainMap solutions, cluster connectivity

does not. Pin utilization per cluster is significantly increased by ChainMap, with external

inputs (+33%), total external pins (+18%), and maximum number of external inputs per

cluster (+12%) all sharply increased for before and forget. This indicates higher connectivity

between clusters, leading to increased competition for channel resources and more inter-cluster

relationships that must be honored. The increase in cluster pin utilization serves as ChainMap’s

Achilles’ heel. Contrasted with the predicted routability factors presented in Tables 7.1 and

www.manaraa.com

125

Table 7.3 Cluster pin utilization, K = 6, critical

Normal Before Forget After
Circuit ext in

cluster
ext

cluster
max ext
cluster

ext in
cluster

ext
cluster

max ext
cluster

ext in
cluster

ext
cluster

max ext
cluster

ext in
cluster

ext
cluster

max ext
cluster

xtea 4.65 10.69 27 11.06 16.52 38 10.18 14.75 38 4.58 10.69 27
usb 8.19 12.46 34 8.21 12.44 36 8.28 12.53 35 7.97 12.32 36
rsa 8.75 14.63 30 15.36 20.94 34 15.21 20.33 36 8.86 14.64 29

md5 11.70 16.29 36 11.63 16.66 33 12.05 16.74 33 10.94 15.96 35
des3 area 13.85 20.00 26 13.94 20.06 26 13.94 20.06 26 13.85 20.00 26
ethernet 6.69 11.89 32 8.03 13.47 38 7.74 13.21 38 7.56 13.06 35
reed sol 16.54 20.20 34 15.90 19.50 35 15.94 19.56 35 15.81 19.42 35

cfft 6.91 13.96 29 14.94 20.82 36 15.05 20.79 38 6.77 14.18 29
Total 9.33 14.71 248 12.41 17.46 276 12.49 17.37 279 9.05 14.62 252

%change – – – 32.91 18.67 11.29 33.79 18.04 12.50 -3.00 -0.66 1.61

7.2, routing results indicate that increased cluster pin utilization reduces the overall routability

of the design.

The area-delay product can be used to judge the overall effectiveness of each design. It

has been shown in [57] to be a reasonable measure of overall FPGA performance and can be

adapted to solution performance. Equation 7.1 gives area-delay as a product of the total routed

wire length and the maximum clock frequency (Pwire−delay). A wire length or period increase

causes Pwire−delay to decrease. Wire length is used because a fixed-size FPGA array contains

an equal number of transistors regardless of the design size. Wire length gives a sense of the

active part of the array because, as more wire is used, more transistors are actively being

incorporated in the design. Figure 7.10 gives the Pwire−delay response for the normal flow

divided by the before and forget flows. Pwire−delay ratios greater than 1 indicate performance

increase.

Pwire−delay =
1

Awire · Tmax
(7.1)

In the average case, Pwire−delay of ChainMap designs reflect the PNR routability results.

Simply, the difficulty in routing ChainMap solutions translates to increased wire length and

path delay, resulting in a decrease in Pwire−delay. Figure 7.11 depicts routed solutions of

cfft, for (before, K = 6, critical) and (normal, K = 6). It shows the ChainMap solution as

www.manaraa.com

126

(a) Global least critical relaxation (b) Least critical branch trimming

Figure 7.10 Pwire−delay, N = 8

generally more congested and dense. The long arithmetic chains of normal, shown in dark, have

the effect of spreading the design out. Ultimately, to rectify the technology map performance

estimates of Section 5.6 and the fixed array PNR results, ChainMap has to produce solutions

that are more place and route friendly.

7.4 Scaled Architecture Performance Assessment

The parameterized (scaled) architecture enables the assessment of solutions implemented

in an FPGA with minimum resources. The array size is tailored to the minimum number of

I/O pads, maximum chain length, or clusters, and the interconnection network is the minimum

channel width necessary to route the design. The aspect ratio of the cluster array is kept at

1.0x, i.e. the number of clusters per row is the same as the clusters per column.

The scaled architectural results differ significantly from those of the fixed architecture.

Figure 7.12 indicates that if cluster resources are limited, ChainMap solutions can often yield

a significant decrease in critical path latency. The primary reason for this is alluded to by

the chain results of Table 7.2, ChainMap solutions have reduced placement constraints. On

average, they require fewer inter-cluster chains that are shorter in cluster/LE length, than

www.manaraa.com

127

(a) before, ∆X = 26, ∆Y = 22, d = 34.1 (b) normal, ∆X = 26, ∆Y = 26, d = 36.8

Figure 7.11 Post-routing implementations for before global least critical
relaxation and normal, K = 6.

traditional designs. The reduction in the number of inter-cluster chains allows the placement

tool to test and accept/reject more chain swaps.

Recall from Section 2.2.4 that chain placement using the method of [8] works by establishing

two identically sized regions incorporating the chains of the swap. If either of these regions

violates the cluster array boundary or severs an existing chain, the potential swap is deemed

invalid and a new random swap is generated, repeating the process. The invalid swap does

not count as a simulated annealing accept/reject, but instead is simply discarded. If the swap

is deemed valid, it is executed, rated according to VPR’s cost metric, and accepted/rejected.

The shorter cluster chains generated by ChainMap solutions increase the likelihood of a legal

swap, thus increasing the number of potential acceptances/rejections. Additionally, shorter

chains result in smaller swap regions and fewer clusters and nets being relocated. The less

the network is perturbed, the more likely a swap is accepted, therefore resulting in better

overall chain placement. An increase in valid swaps and a higher rate of acceptance allow the

development of better placements for ChainMap solutions.

www.manaraa.com

128

(a) Global least critical relaxation (b) Least critical branch trimming

Figure 7.12 Speedup, N = 8

Table 7.4 Cluster array dimensions, K = 6, critical

Normal Before Forget

Fixed Scaled Fixed Scaled Fixed Scaled

Circuit X,Y dfix X,Y dscale X,Y dfix X,Y dscale X,Y dfix X,Y dscale

xtea 11.0,11.2 15.78 10.8,11.1 15.54 10.7,11.2 15.67 10.6,10.6 15.12 11.4,10.4 15.50 10.4,11.4 15.40
usb 21.8,21.7 30.84 19.0,19.0 26.87 21.3,22.4 30.99 19.0,19.0 26.87 21.0,21.9 30.36 19.0,19.0 26.87
rsa 14.8,18.3 23.85 11.9,12.0 16.90 14.3,16.3 22.04 11.0,11.0 15.56 14.5,15.4 21.40 11.0,11.0 15.56

md5 18.9,18.0 26.17 17.0,17.0 24.01 18.5,20.1 27.40 17.0,17.0 24.04 20.3,19.5 28.51 18.0,18.0 25.42
des3 area 34.0,34.0 48.05 34.0,34.0 47.98 34.0,34.0 48.08 34.0,34.0 48.08 34.0,34.0 48.08 34.0,34.0 48.08
ethernet 26.9,26.2 39.00 6.0,6.0 8.49 29.6,26.7 40.46 6.0,6.0 8.49 26.3,27.1 38.72 6.0,6.0 8.49
reed sol 15.4,13.7 20.71 13.0,13.0 18.38 13.5,13.8 19.36 12.0,12.0 16.97 13.5,14.1 19.69 12.0,12.0 16.97

cfft 26.5,24.6 36.19 21.0,21.0 29.70 25.0,25.0 35.41 21.0,21.0 29.70 24.4,24.6 34.75 21.0,21.0 29.70

Total 169,168 241 133,133 188 167,169 239 131,131 185 165,167 237 131,132 187

%change –,– – –,– – -1.5,1.1 -0.49 -1.4,-1.8 -1.62 -2.4,-0.3 -1.49 -0.9,-0.5 -0.74

The second reason for improvement is that arrays with an over-abundance of resources,

relative to the design size, allow the design to spread out. Table 7.4 verifies what Figure 7.11

demonstrates; if given virtually unlimited resources, the normal flow will generate designs that

have higher average diameter. The dimensions of the circuit in the fixed array, in terms of

cluster diameter (d) and X,Y width indicate that ChainMap designs have a smaller footprint.

This leads to congestion when resources are plentiful, but aids the solution when resources are

at a premium.

The final reason for improved results for scaled arrays is that ChainMap solutions often

www.manaraa.com

129

require fewer LEs and, consequently, fewer clusters (Table 7.1). In some cases, this allows the

use of a smaller cluster array. The scaled solution dimensions (X,Y) in Table 7.4 are in all

cases the same size of the array. In most cases, the normal and before dimensions are the

same, however in the cases of rsa and reed sol, the required array size actually decreases. Only

in the case of md5 does the ChainMap solution require a bigger array than normal, and the

speedup results of Figure 7.12 indicate the repercussions.

Routability in the scaled solutions changes little from that of the fixed architecture. Fig-

ures 7.13 and 7.14 indicate that ChainMap designs still record higher minimum channel width

and more total wire length than normal. This is still a symptom of the increased connectivity

between clusters which hinders ChainMap solutions. However, an increase in wire length does

not necessarily mean performance degradation. The amount of wire available in the general

routing array is the same whether or not the circuit uses it; ChainMap results, though they

require much more routing, are simply making use of what is available. The small increase in

average channel width versus the large increase in wire length indicates that ChainMap solu-

tions do not require a prohibitively increase in static routing resources, but rather that they

more completely use the available wire. Channel width does not have to increase substantially,

but use of the channel will for ChainMap circuits. Despite the close quarters in the scaled ar-

chitecture, clusters continue to require the same I/O and thus result in similar channel width

and wire length.

The scaled architecture allows the measurement of the area-delay product using the tran-

sistors in the design. Area is measured in terms of the number of minimum-width transistors

the architecture uses, where minimum width includes the area of the transistor plus its spacing

for a given process size. If non-minimum width transistors are required to implement a specific

component, such as when increased drive strength is necessary, the number of minimum-width

transistor equivalents (MTEs) are tallied. The area of the design includes the transistors in

the interconnection matrix and local cluster interconnection for any combination of architec-

tural parameters [12]. Area estimation is not useful in the fixed architecture because the array

size and interconnection array are identical between designs, thus giving all solutions identical

www.manaraa.com

130

(a) Global least critical relaxation (b) Least critical branch trimming

Figure 7.13 Channel width, N = 8

(a) Global least critical relaxation (b) Least critical branch trimming

Figure 7.14 Total routed wire length, N = 8

www.manaraa.com

131

transistor area. Parea−delay, given by Equation 7.2, for the scaled architecture accounts for

minimum cluster and routing array sizes. Parea−delay greater than 1 indicates better overall

performance.

Parea−delay =
1

AMTE · Tmax
(7.2)

(a) Global least critical relaxation (b) Least critical branch trimming

Figure 7.15 Pwire−delay, N = 8

(a) Global least critical relaxation (b) Least critical branch trimming

Figure 7.16 Parea−delay, N = 8

Figures 7.15 and 7.16 present Pwire−delay and Parea−delay, respectively. They indicate

that in cluster-constrained arrays, given the required minimum channel width, ChainMap

www.manaraa.com

132

yields solutions that balance area and delay effectively, resulting in up to a 1.65x increase in

Parea−delay (rsa, forget, critical, K = 6). The biggest improvements in area-delay occur in the

cases where the size of the cluster array can be reduced as a result of lower cluster utilization,

such as in rsa and reed sol. Conversely, when the cluster array size is increased, such as in

md5, area-delay decreases sharply.

7.5 Summary

The full design flow experiments indicate that, while ChainMap endows designs with good

characteristics across a variety of factors, these do not immediately translate to overall design

performance when resources are abundant. However, when the chip size or alloted array space

is tailor-fit to the design and routing resources are sufficient, ChainMap has the ability to

produce very significant performance increases. Post-technology map performance estimations

and the lion share of routability measures favor ChainMap, but one very important metric,

external pins per cluster, does not. An increase in the number of external connections per

cluster causes each them to be increasingly dependent on each other, and results in neutral

average maximum clock frequency change and, in some cases, frequency degradation for large

cluster arrays. When cluster array sizes are small, ChainMap’s affinity toward less numerous,

shorter cluster chains allows it to create higher quality placements that translate to better

routed solutions.

Among the designs that fare well, in the fixed-size architecture, are those that have few

to no arithmetic chains in HDL. Designs such as des3 area and reed sol realize performance

increases of up to 1.10x in terms of critical path latency, and up to 1.19x in Pwire−delay. Designs

that fare poorly are those that contain a modest number of arithmetic chains, such as xtea

and md5. In these cases, path latency degradations of 0.7x (xtea, before, K = 4, critical)

and 0.73x (md5, before, K = 5, critical) are witnessed. This is a direct result of increased

cluster connectivity caused by the packing of multiple arithmetic bitslices into large K-LUTs

and the tendency of long chains to decrease design density. In general, increasing LUT size

www.manaraa.com

133

has the effect of increasing performance slightly for the average case, but in some cases, like

xtea and md5 at K = 4, causes sharp decreases.

For cluster-constrained architectures, high-arithmetic designs witnessed the most substan-

tial performance increases, contrary to the fixed-size architecture. Long chains that lead to

sparse placements and better routed solutions for fixed-sized arrays prove to be handicaps

when resources are limited. Among those designs that fare well in scaled architectures are the

heavily arithmetic rsa and cfft, at 1.26x (before, K = 6, critical) and 1.51x (before, K = 6,

critical), respectively. In the average case, scaled architecture performance is 1.11x that of

normal for (before, K = 6, critical).

With regard to relaxation techniques, global least critical relaxation tends to yield more

predictable performance relative to least critical branch trimming. Due to its no-duplication

policy, branch trimming has the potential to yield significant performance increases in individ-

ual cases, but is also prone to higher performance degradation. Nevertheless, both techniques

prove the need to develop more effective relaxation strategies.

While the before and forget flows suffer the greatest from increased cluster connectivity

in large cluster arrays, the after flow is capable of taking advantage of ChainMap as an

immediate addition to HDL arithmetic chains. In heavily arithmetic designs such as cfft, this

means that the overall effect of ChainMap is negligible. However, in designs that feature few

to no arithmetic chains such as des3 area and reed sol, ChainMap is an appropriate addition

to the design flow. Designs that previously left the carry chain idle can now take full advantage

of the low latency resource.

The results convey the need for improved cut selection, relaxation, clustering, and place-

ment techniques that can take advantage of the potential performance increases outlined in

Section 5.6 and Table 7.1. Because cluster connectivity is the largest contributing factor to an

increase in routing complexity, not inter-cluster chains, the challenge becomes how to evoke

better cut selection during the technology mapping stage where LE connectivity is established.

Nevertheless, fewer inter-cluster chains are shown to significantly improve design performance

when cluster resources are limited, indicating ChainMap’s utility in production systems. Fur-

www.manaraa.com

134

thermore, designs with multiple IP cores typically constrain each core to a subset of the array

clusters, inducing cluster constraints that emulate the scaled array results.

www.manaraa.com

135

CHAPTER 8. DISCUSSION, CONTRIBUTIONS, AND CONCLUSION

ChainMap provides a polynomial time solution to the problem of identifying generic logic

chains in an arbitrary Boolean network. By looking at the problem of circuit depth from the

perspective of minimizing routing depth, the optimal baseline of performance for chains is

established. Methods for relaxing optimal chain mappings are presented and shown to retain

some of the potential performance indicated by post-technology map experiments. Final place

and route experiments show that ChainMap can offer performance increases in some cases

when resources are abundant, but results in performance degradation in others. However, when

cluster resources are limited, ChainMap designs provide significant performance improvements.

It is demonstrated that ChainMap is a viable solution to the problem of mapping chains without

HDL.

8.1 Discussion

Ultimately ChainMap’s performance is dependent on the entire design flow; efficient synthe-

sis, minimal-area and routability based cut selection, relaxation that balances area, routability,

and/or delay, clustering that reduces connectivity, placement that deals with chains effectively,

and routing that combats congestion. While the techniques presented are sufficient to demon-

strate proof of concept and conditions under which performance can be significantly increased

are identified, new techniques need to be developed to take full advantage of optimal chain

selection in all situations and for all circuits. The measures of routing complexity discussed

in Tables 7.1 and 7.2 (clusters, nets, routing cost, chains) indicate that ChainMap solutions

possess very good characteristics that, in many cases, position them as better solutions. How-

ever, full place and route results on fixed-size arrays do not bear this observation out. The

www.manaraa.com

136

primary culprit is in the connectivity demanded by each cluster. ChainMap solutions require,

on average, 30% more input and 18% more total connections from the general routing array

per cluster. This contributes to cases where channel width and total routed wire length are

increased. Increased connectivity can make the design harder to place and ultimately degrade

maximum clock frequency. Results change drastically when considering resource-constrained

arrays, as the less numerous and shorter chains favored by ChainMap facilitate the generation

of better placement solutions. The placement complexity created by increased cluster con-

nectivity is far out-weighed by the constraints imposed by long HDL arithmetic chains. The

seriousness of HDL constraints are exposed when the cluster resources in the array are limited.

There is one main reason for an increase in cluster connectivity–node duplication. Chain-

Map solutions lead to an increase in implicit and explicit node duplication during technology

mapping. Implicit duplication occurs when multiple K-feasible cuts include the same Boolean

node. Many such cases result in the inputs of the duplicated node having to map to multiple

K-LUTs. Nodes in an arithmetic chain typically share very few inputs between each other

and when conglomerated into LUTs via large K-feasible cuts, they are often done so across

multiple LUTs, resulting in implicit duplication. Figure 5.3 shows how nodes are implicitly

duplicated by ChainMap. The K-feasible cuts used by two separate nodes to generate their

respective LUTs can overlap, and result in each LUT implementing the overlapping nodes.

Explicit duplication occurs during relaxation, and although it protects critical delay paths

through the network, it also requires the connectivity of the node be duplicated.

Working in its favor, ChainMap significantly reduces the prevalence and size of inter and

intra-cluster chains. Intra-cluster chains dictate the clustering solution by grouping together

LEs that would normally have little in common. Inter-cluster chains create cluster dependencies

and constrain placement. The longer chains favored by HDL are a hindrance when cluster

resources are limited, but an advantage if resources are unlimited. They are a double-edged

sword that can alternately constrain placement and spread the design out and reduce overall

routing complexity. The duality of longer cluster chains is witnessed in scaled architecture

performance. The traditional approach to chains requires longer cluster chains that are difficult

www.manaraa.com

137

to manipulate by the placement engine. This is manifested in a larger design diameter relative

to ChainMap solutions (Table 7.4). ChainMap designs are able to generate much more efficient

placement solutions in limited array space because fewer inter-cluster chain constraints need

be honored. If given sufficient routing resources, ChainMap placement solutions yield better

routed solutions in area-constrained arrays.

Work in [28] finds that while LUT utilization is an admirable goal, it is inappropriate if it

causes the interconnect not to be used to its full potential. Realizing the full potential of one

resource demands that the other must go underutilized. In the case of ChainMap, if LEs are

fully utilized, they cause an increase in LE connectivity and ultimately cluster connectivity.

Consequently, when the number of LEs and inputs available in each cluster are fully utilized,

they tend to degrade the performance of interconnect through congestion. This conclusion is

corroborated by [71], which finds that limiting the number of LEs per cluster is an effective

strategy in reducing channel width. This extends to HierARC, which may prove to be too

efficient at achieving high cluster utilization.

Table 8.1 concurs, indicating an increase in average fanout per node that, ironically, occurs

concurrent with a decrease in routing cost. This indicates that routing cost does not necessarily

indicate overall routability, and that there is a need to sacrifice increased LE utilization for

decreased net and LE fanout. The performance of clustering, placement, and routing can only

be as good as the underlying technology map. While ChainMap solutions hold great promise,

further work needs to be done to encourage cuts that not only minimize routing depth, but

also reduce node fanout.

Performance also hinges on the number of LEs in a design. In most cases, ChainMap does a

good job of reducing the total number of LUTs, but in some cases has difficulty translating LUT

reduction to LE reduction. Table 8.2 shows sample LE/LUT utilization results for (critical,

K = 5). It indicates that the magnitude of change of LUTs for ChainMap solutions does not

always extend to the number of LEs. In many cases, this means an inordinate increase in the

number LEs in a design at the same time as a reduction in the number of LUTs. For example,

the number of LUTs relative to normal is reduced to 0.94x for (xtea, before), but the number

www.manaraa.com

138

Table 8.1 Technology map complexity, K = 6, critical

Normal Before Forget After
Circuit fanout

net
fanout

LE Rcost
fanout

net
fanout

LE Rcost
fanout

net
fanout

LE Rcost
fanout

net
fanout

LE Rcost

xtea 3.10 4.14 1821.23 4.17 5.34 1732.42 4.05 4.70 1706.91 3.10 4.15 1816.66
usb 4.80 5.15 5127.51 5.21 5.37 4939.63 5.20 5.34 4933.15 4.77 5.23 5214.02
rsa 4.02 5.03 2083.06 5.32 6.29 1976.37 5.18 5.91 1930.86 3.99 5.00 2095.30

md5 4.68 5.25 3646.24 4.74 5.42 4371.28 4.69 5.35 4559.44 4.30 4.96 4248.94
des3 area 2.28 2.29 1263.10 2.29 2.29 1248.88 2.29 2.29 1248.88 2.28 2.29 1263.10
ethernet 4.19 4.58 543.77 4.71 5.01 501.95 4.72 4.98 498.82 4.15 4.79 537.96
reed sol 5.71 5.73 2005.57 6.04 6.15 1854.96 6.04 6.16 1855.32 5.99 6.14 1868.13

cfft 3.74 5.44 8391.16 5.78 6.93 6839.31 5.75 6.84 6858.65 3.75 5.52 8201.61
Total 4.17 5.03 24882 5.11 5.74 23465 5.07 5.62 23592 4.13 5.06 25246

%change – – – 22.65 13.96 -5.69 21.61 11.59 -5.18 -0.92 0.46 1.46

Table 8.2 Area Paradox for OpenCores Benchmarks, K = 5, critical

Normal Before Forget After
Circuit LUT LE LUT λLUT LE λLE LUT λLUT LE λLE LUT λLUT LE λLE

xtea 1009 731 944 0.94 872 1.19 935 0.93 854 1.17 974 0.97 696 0.95
usb 3157 3112 3119 0.99 3202 1.03 3123 0.99 3206 1.03 3283 1.04 3159 1.02
rsa 1162 911 1010 0.87 981 1.08 1009 0.87 982 1.08 1162 1.00 911 1.00

md5 3002 2759 3111 1.04 3000 1.09 3141 1.05 3026 1.10 2796 0.93 2475 0.90
des3 area 824 908 894 1.08 886 0.98 926 1.12 915 1.01 903 1.10 886 0.98
ethernet 260 287 244 0.94 290 1.01 244 0.94 290 1.01 265 1.02 283 0.99
reed sol 1227 1223 1221 1.00 1206 0.99 1219 0.99 1204 0.98 1229 1.00 1208 0.99

cfft 4764 3345 3517 0.74 3517 1.05 3522 0.74 3524 1.05 4645 0.98 3222 0.96
Total 15405 13276 14060 0.91 13954 1.05 14119 0.92 14001 1.05 15257 0.99 12840 0.97

of LEs jumps to 1.19x. This is mainly due to the the overpopulation of wider K-LUTs that

causes them to violate the input limit aspect of the exclusivity constraint (Lemma 5.4.1). In

two cases, reed sol and des3 area (before), the ratio of LEs actually decreases relative to the

ratio of LUTs. This occurs because these two designs are strongly non-arithmetic (Table 1.1)

at less than 1.5%. ChainMap and ChainPack actually encourage LE formation and reduced

consumption in these cases.

An example of the area paradox, found in xtea, is shown in Figure 8.1 which depicts nodes

and their chain connections (general routing nets are omitted). The normal implementation

www.manaraa.com

139

Figure 8.1 Area paradox for xtea, (a) normal with 17 LUTs, 9 LEs and,
(b) ChainMap with 13 LUTs, 13 LEs.

depicted in (a) uses 17 LUTs, but all are paired up as sum and cout members of an LE. Because

each LUT has a mate, the number of LEs required in the normal case is 9. The ChainMap

solution in (b) reduces the overall LUT count to 13, but each LUT is independent and must

be implemented in its own LE. Any of the reasons outlined in the exclusivity constraint of

Lemma 5.4.1 can require LUTs to occupy separate LEs, including too many distinct inputs,

homogeneous outputs, and inter-dependence. The most prevalent reason that so few LE pairs

can be formed in the ChainMap solution is that each LUT becomes overpopulated to the

point where LE pairs are disqualified due to too many distinct inputs. Because of the area

paradox, using LUTs as a measure of area can be misleading. On average, it results in the

forget and before flows requiring slightly more LEs than normal. LUTs can be encouraged to

form more LEs by choosing cuts that are not as wide, but still depth optimal, as discussed in

Section 5.2. The area paradox is also related to connectivity concerns, as each over-populated

LUT that ChainMap forms increases its fanin, thus simultaneously disqualifying it as an LE

and increasing its connectivity.

www.manaraa.com

140

8.2 Contributions

ChainMap establishes an optimal baseline of performance for generic logic chains in FPGAs.

In doing so, it finds that HDL-based chains are sub-optimal solutions that don’t fully realize

their potential. However, they are a very good heuristic solution to using the high performance

carry chain resource available in most modern FPGAs. This dissertation’s contributions are:

1. A formal logic chain definition is presented that encompasses both arithmetic and non-

arithmetic operations.

2. A logic cell design capable of driving a carry chain with a full K-LUT operation is shown

to have a minimal effect on area and performance while facilitating generic logic chains.

3. ChainMap is presented as a technology mapping algorithm that creates optimal generic

logic chains in polynomial time without HDL arithmetic chain macros.

4. Global least critical relaxation and least critical branch trimming techniques convert

optimal chain mappings to feasible solutions.

5. HierARC is presented as a deterministic, polynomial run-time, scalable, and effective

clustering tool for island-style FPGAs.

The definition of a logic chain has been formalized as a series of depth increasing nodes,

such that there is a directed edge(u, v) between adjacent nodes {u, v}, that causes the logic

depth of v to increase while not increasing its routing depth. This definition addresses the fact

that there is a clear difference in the speed of routing versus chain nets, and guides their use.

The carry chain reuse cell [36] makes it possible to use the high performance carry chain to

propagate full K-input operations. Traditional carry-select adders have the ability to compute

two arbitrary (K − 1)-input functions using the same inputs and transmit one along along the

carry chain to a subsequent LE and the other to the general routing array. The reuse cell

allows designers to compute the same two (K − 1)-input functions, or one K-input function

whose output is simultaneously transmitted to the carry chain and general routing array. To

facilitate this, the reuse cell incorporates two additional 2:1 pass-transistor multiplexers that

www.manaraa.com

141

have negligible delay and area effect. The reuse cell requires no additional inter-LE connectivity

to achieve this.

The optimal logic chain technology mapping algorithm, ChainMap, achieves an estimated

post-technology mapping average speedup of 1.4x optimally versus traditional HDL-defined

chains. The average performance difference, post-technology mapping, between disregarding

HDL macros completely and inserting chains before mapping is within 5%, indicating HDL

preservation might potentially be abandoned. This could affect the entire FPGA design flow,

allowing CAD designers to expand algorithms past the partitions created by HDL. Since the

best area/speedup is usually achieved by the insertion of arithmetic chains before mapping,

one inference is that they are already highly optimized in terms of literal count, and resynthesis

creates sub-optimality. Another possibility is that improved synthesis techniques, such as those

offered by ABC [59], could potentially generate Boolean networks more suited to logic chains.

ChainMap demonstrates that generic logic chains have the potential to perform better than

solely arithmetic ones.

ChainMap requires an area/speedup trade off, an artifact of FPGAs enforcing the ex-

clusivity constraint. However, three simple relaxation heuristics allow ChainMap to produce

consistent reductions in LUT consumption. LUT reductions of up to 0.71x are witnessed

(cfft, K = 5, before, shallow). Optimal solutions, while prohibitive from an area standpoint,

indicate that better relaxation techniques have the potential to yield ubiquitous speedup in-

creases. Global least critical relaxation, shallowest logic branch trimming, and least critical

branch trimming all mitigate area expansion while preserving some of the optimal performance.

The post-technology map results set a baseline for potential performance, but complete

design flow experiments indicate that additional improvements to the entire design flow, in-

cluding ChainMap, are necessary to realize estimated performance in the final placed and

routed solution. While final place and route ChainMap solutions for large cluster arrays are,

on average, comparable to the normal approach, speedup ranges from 0.7x to 1.25x. When

cluster resources are limited, ChainMap solutions yield significant performance improvements

through higher-quality placement solutions. ChainMap favors fewer, smaller chains that have

www.manaraa.com

142

the effect of reducing the constraints on placement posed by long HDL-based chains. This

allows placement of ChainMap solutions to generate more valid swaps and an increased num-

ber of swap acceptances. Critical path latency in cluster-constrained architectures ranges from

0.67x to 1.53x with 1.1x average. These results indicate the need for future work to unleash

the full potential of optimal generic logic chains, but also that ChainMap is a valid solution

for cluster-constrained architectures.

Finally, HierARC [39] is presented as a Hierarchical Agglomerative Reconfigurable fabric

Clustering tool. HierARC, possessing only a routability metric, is capable of reductions in

channel width (-21%), wire length (-23%), and transistor area (-21%) with neutral critical

path change (+0.03%) relative to T-Vpack. It also compares favorably to other clustering tools

published in literature, often times exceeding their relative T-Vpack performance. HierARC

is polynomial in run-time, scalable with respect to incorporating performance metrics through

Euclidian distance, deterministic, and can easily accommodate resource constraints without

post-processing techniques such as cluster depopulation.

8.3 Future Work

Sections 5.6 and 7.2 indicate that relaxation, placement, and routing fail to fully harness

ChainMap performance, primarily due to increased cluster connectivity. Although ChainMap

solutions typically use fewer resources (i.e. nets, clusters) and have lower routing cost, they

tend to possess higher total routing utilization which erodes potential performance gains. The

primary culprit is ChainMap itself; it has the tendency to over-pack LUTs, resulting in higher

LUT fanout and higher LUT fanin, which it passes on throughout the entire design flow.

Another side effect of over-packing LUTs is the area paradox. Overpopulated LUTs have

difficulty forming LEs because they often violate the limit on total number of distinct inputs

outlined in the exclusivity constraint (Lemma 5.4.1). Overpopulated LUTs have to be imple-

mented in their own LE, causing a decrease in the number of LUTs to become an increase

in LEs, eventually leading to an increase in the number of clusters. One way to combat the

area paradox is to create a more intelligent version of ChainPack, wherein techniques such

www.manaraa.com

143

as Roth-Karp decomposition can be employed to force LUTs to conform to the arithmetic

LE architectural model and provide a pathway for LUT reduction to extend to LE reduction.

Another solution to LUT over-packing is to choose cuts during ChainMap’s execution that

reduce implicit LUT duplication. This problem is common in technology mapping has been

found to be NP-hard [30]. Avenues for improvement involve extending the basic ChainMap

algorithm to incorporate an arbitrary net-delay model, re-synthesis and re-timing, or adapt it

to a cut-enumeration technique. Other technology mapping algorithms such as [17] incorpo-

rate cut-enumeration, successive iterations of FlowMap use re-synthesis [24] to minimize area,

and re-timing is used in ABC [59]. Such techniques are also readily applied to ChainMap.

Future work includes a cut-enumeration version of ChainMap with the ability to select cuts

that have the efficacy to reduce duplications and over-packing of LUTs, thus reducing cluster

connectivity and improving overall performance.

The relaxation techniques applied to optimal ChainMap solutions is another candidate for

improvement. Global least critical relaxation and the branch trimming approaches specifically

target chains that are structured similar to arithmetic chains by relaxing connections based

on a simple delay model. Because it targets arithmetic chains, its application to designs with

a multitude of small chains is, at times, ineffective. A more exact timing model coupled

with routability and area based relaxation have the potential to drastically improve relaxed

solutions. The presented relaxation techniques could also be applied to HDL chains to reduce

the constraints they impose on place and route.

HierARC does a superb job of reducing the routing cost of a design. However, in its current

implementation it only targets routing cost and consequently yields delay-neutral results. The

Euclidian gain function it incorporates is inherently capable of accommodating a multitude of

performance metrics. Future work is to include metrics such as timing, power consumption,

and fault tolerance. Another potential improvement to HierARC is to make it less effective at

eliminating small fanout nets, and incorporate constraints to limit cluster packing. Increased

cluster connectivity has been shown to degrade performance, and constraining cluster packing

could reduce contention for routing resources as per [71]. This applies directly to ChainMap

www.manaraa.com

144

solutions, which commonly suffer from cluster over-connectivity. Finally, a full exploration of

how to cluster chains effectively is necessary to precipitate better placement and routing of

chains.

The placement techniques used by VPR minimize net and path timing, and, coupled with

the technique presented in [8], provide a method for dealing with chains. However, they also

provide opportunities for great improvement. The net and path driven placement techniques

of VPR already capture the timing impact of chains well, but were not originally designed with

them in mind and can therefore be further tuned to their unique characteristics. Future work

includes place and route experimentation that draws from other disciplines, just as HierARC

draws upon biology. Clustering and placement can be performed using other DNA microarray

techniques like K-means, machine learning approaches such as self organizing maps [13], or

game theory for peer-to-peer networks [40].

A radical approach to harnessing the potential performance of ChainMap is to design FPGA

architectures that deviate from the arithmetic LE chain model. Chapter 3 presents a reuse cell

that is capable of operating in both sub-width and full-width LE modes. However, abandoning

the traditional LE and/or 1-dimensional chain interconnection model(s) may prove to be better

options. The traditional arithmetic LE model requires two LUTs, the sum and cout, to

implement members of a chain. To do so, extra logic and memory are typically required to

support independent sum and cout outputs, define carry input multiplexing, support dynamic

addition/subtraction, and dictate normal or arithmetic operation mode. A valid alternative

LE designed specifically for use with generic logic chains only requires a single K-LUT that

outputs the same operation on both the cout and sum ports at all times (i.e. only operates inK-

LUT mode). Furthermore, a 1-dimensional chain only provides chain net connectivity between

adjacent cells, and necessitates the relaxation and duplication phases of ChainMap. An FPGA

architecture supporting 2-dimensional chain trees could potentially reduce or eliminate the

need for these phases, and more directly support optimal ChainMap solutions.

www.manaraa.com

145

8.4 Conclusion

ChainMap is not the completion of a work, but rather the beginning of a body of work whose

goal is to fully exploit the performance of optimal technology map solutions. Several areas for

future work have already been proposed, including chain-aware synthesis, cut-enumeration for

chains, more effective relaxation, development of novel architectures, and improved clustering,

placement, routing. The goal of all of these is to unleash the potential for generic logic chains

that technology mapping experiments have indicated is possible.

Area-constrained and unconstrained experiments divulge the effective range of ChainMap.

When cluster resources are plentiful, ChainMap designs suffer from density and routing con-

gestion. HDL dictated arithmetic chains tend to spread out the design and reduce congestion.

However, if cluster resources are restricted, the shorter, less numerous chains produced by

ChainMap become an asset. With fewer inter-cluster constraints to be honored, ChainMap

designs are able to produce more effective placement solutions, ultimately yielding higher per-

formance routed solutions.

Area-constrained and unconstrained architectures represent opposite ends of the product

life cycle. Initially, FPGAs with vast cluster resources are used to develop systems and serve

as prototypes. During production, smaller FPGAs are chosen to reduce system cost and

preserve resources like area and power. Additionally, multiple-IP designs can benefit as they

typically impose cluster constraints in an effort to preserve the high efficiency of mature cores.

As FPGAs increasingly become part of production designs, ChainMap provides an avenue to

exploit every available resource they possess.

ChainMap has shown the ability to identify optimal chain implementation without the

use of HDL macros, positioning it as a replacement to the traditional approach to arithmetic

operations, and enabling the creation of innovative architectures and tools that don’t enforce

artificial partitions. By rethinking technology mapping as an exercise in the minimization of

routing depth rather than logic depth, ChainMap portends performance gains for all designs.

It realizes these performance gains under resource-constrained architectures. Arithmetic HDL

macros can be discarded in favor of allowing the CAD flow to decide when and where logic

www.manaraa.com

146

chains should be created in a Boolean network. With this approach, both FPGA hardware

and computer aided design can move beyond the arithmetic constraint, and start considering

all chains as having been created equal.

www.manaraa.com

147

APPENDIX

Architectural Description

VPR architectural parameters used to perform full place and route experiments with Chain-

Map. The general routing array is described in Table A.3, and characterized by the segment

length, frequency, and switch boxes. Table A.4 provides timing parameters for each individual

logic element. Finally, Table A.5 gives the interface each logic element has with its inter-cluster

input and output ports, and intra-cluster interconnection between logic elements.

www.manaraa.com

148

Table A.3 VPR Routing Architectural Parameters

Component Parameter
Single Line freq = 22%, Rmetal = 4.16Ω, Cmetal: 81e-15F
Double Line freq = 28%, Rmetal = 4.16Ω, Cmetal: 81e-15F
Quad Line freq = 42%, Rmetal = 4.16Ω, Cmetal: 81e-15F
Long Line freq = 8%, Rmetal = 4.16Ω, Cmetal: 81e-15F
Switch Box Subset
Switch 0 R = 196.728Ω, Cin = 20.574e-15F , Cout = 20.574e-15F , Tdel = 0s
Switch 1 R = 393.47Ω, Cin = 7.512e-15F , Cout = 20.574e-15F , Tdel = 524e-12s, buffered
Switch 2 R = 786.9Ω, Cin = 7.512e-15F , Cout = 10.762e-15F , Tdel = 456e-12s, tristate

Table A.4 VPR LE Architectural Parameters

Timing parameterK = 4 K = 5 K = 6
Tcomb 1.902e-10s 2.567e-10s 3.002e-10s
Tseq in 1.692e-10s 2.359e-10s 2.849e-10s
Tseq out 9.585e-11 9.516000e-11 9.765e-11s
Tseq async 9.585e-11 9.516000e-11 9.765e-11s
Tseq sync 6.700e-12 6.900e-12 1.240e-11s
Tcout 2.770e-11 2.770e-11 2.770e-11s

Table A.5 VPR Component Parameters

Timing parameter K = 4 K = 5 K = 6
C ipin cblock 0 0 0
T ipin cblock 9.279e-11 9.289e-11 8.855e-11
T ipad 5.616e-11 5.657e-11 5.667e-11
T opad 1.835e-11 1.913e-11 1.919e-11
T sblk cout to clb cout 0 0 0
T clb cin to sblk cin 0 0 0
T sblk cout to sblk cin 0 0 0
T clb cout to clb cin 0 0 0
T sblk opin to sblk ipin 6.079e-11 6.141e-11 6.258e-11
T clb ipin to sblk ipin 6.129e-11 5.996e-11 6.086e-11
T sblk opin to clb opin 0 0 0

www.manaraa.com

149

Bibliography

[1] Actel. Actel FPGAs. http://www.actel.com.

[2] Actel. QuickLogic FPGAs. http://www.quicklogic.com.

[3] A. Aggarwal and D. Lewis. Routing architectures for hierarchical field programmable

gatearrays. Computer Design: VLSI in Computers and Processors, 1994. ICCD’94. Pro-

ceedings., IEEE International Conference on, pages 475–478, 1994.

[4] E. Ahmed and J. Rose. The effect of lut and cluster size on deep-submicron fpga perfor-

mance and density. IEEE Transactions on VLSI Systems, 12(3):288–298, March 2004.

[5] Altera. Quartus II Handbook. www.altera.com.

[6] Altera. Stratix Series User Guides. www.altera.com.

[7] F. Barat, R. Lauwereins, and G. Deconinck. Reconfigurable instruction set processors from

a hardware/software perspective. IEEE Transactions on Software Engineering, 28(9):847–

862, September 2002.

[8] M. J. Beauchamp, S. Hauck, K. D. Underwood, and K. S. Hemmert. Embedded floating-

point units in fpgas. In FPGA ’06: Proceedings of the 2006 ACM/SIGDA 14th interna-

tional symposium on Field programmable gate arrays, pages 12–20, New York, NY, USA,

2006. ACM Press.

[9] L. Benini and G. D. Micheli. A survey of boolean matching techniques for library binding.

ACM Trans. Des. Autom. Electron. Syst., 2(3):193–226, 1997.

www.manaraa.com

150

[10] V. Betz and J. Rose. Using architectural families to increase fpga speed and density.

In FPGA ’95: Proceedings of the 1995 ACM third international symposium on Field-

programmable gate arrays, pages 10–16, New York, NY, USA, 1995. ACM Press.

[11] V. Betz and J. Rose. Cluster-based logic blocks for fpgas: area-efficiency vs. input sharing

and size. In Proceedings of the IEEE 1997 Custom Integrated Circuits Conference, pages

551–554, May 1997.

[12] V. Betz, J. Rose, and A. Marquardt. Architecture and CAD for Deep-Submicron FPGAs.

Kluwer, Norwell, MA, 1999.

[13] D. C. Blight and R. D. McLeod. Self-organizing kohonen maps for fpga placement. Field-

Programmable Gate Arrays: Architecture and Tools for Rapid Prototyping, 705:88–95,

1993.

[14] E. Bozorgzadeh, S. Ogrenci-Memik, and M. Sarrafzadeh. Rpack: routability-driven pack-

ing for cluster-based fpgas. In ASP-DAC ’01: Proceedings of the 2001 conference on Asia

South Pacific design automation, pages 629–634, New York, NY, USA, 2001. ACM Press.

[15] E. Bozorgzadeh, S. Ogrenci-Memik, and M. Sarrafzadeh. Routability-driven packing: Met-

rics and algorithms for cluster-based fpgas. Journal of Circuits Systems and Computers,

13(1):77–100, 2004.

[16] A. Caldwell, A. Kahng, S. Mantik, I. Markov, and A. Zelikovsky. On wirelength es-

timations for row-based placement. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 18(9):1265–1278, 1999.

[17] D. Chen and J. Cong. DAOmap: a depth-optimal area optimization mapping algorithm

for FPGA designs. In IEEE/ACM International Conference on Computer Aided Design,

pages 752–759, 2004.

[18] K. Chen, J. Cong, Y. Ding, A. Kahng, and P. Trajmar. DAG-Map: graph-based FPGA

technology mapping for delay optimization. IEEE Design and Testing of Computers,

9(3):7–20, 1992.

www.manaraa.com

151

[19] K. Chung. Architecture and synthesis of field-programmable gate arrays with hard-wired

connections. Phd, University of Toronto, 1995.

[20] J. Cong and Y. Ding. FlowMap: an optimal technology mapping algorithm for delay

optimization in lookup-table based FPGA designs. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 13(1):1–12, 1994.

[21] J. Cong, Y. Ding, T. Gao, and K. Chen. LUT-based FPGA technology mapping under

arbitrary net-delay models. Computers & Graphics(Pergamon), 18(4):507–516, 1994.

[22] J. Cong and Y.-Y. Hwang. Simultaneous depth and area minimization in lut-based fpga

mapping. In FPGA ’95: Proceedings of the 1995 ACM third international symposium on

Field-programmable gate arrays, pages 68–74, New York, NY, USA, 1995. ACM Press.

[23] J. Cong and K. Minkovich. Optimality study of logic synthesis for lut-based fpgas. IEEE

Transactions On Computer-Aided Design Of Integrated Circuits And Systems, 26(2):230–

239, 2007.

[24] J. Cong, J. Peck, and Y. Ding. Rasp: a general logic synthesis system for sram-based

fpgas. In FPGA ’96: Proceedings of the 1996 ACM fourth international symposium on

Field-programmable gate arrays, pages 137–143, New York, NY, USA, 1996. ACM Press.

[25] J. Cong, C. Wu, and Y. Ding. Cut ranking and pruning: enabling a general and efficient

fpga mapping solution. In FPGA ’99: Proceedings of the 1999 ACM/SIGDA seventh

international symposium on Field programmable gate arrays, pages 29–35, New York,

NY, USA, 1999. ACM.

[26] T. Cormen, C. Leiserson, and R. Rivest. Algorithms. MIT Press, Cambridge, MA, 1990.

[27] A. DeHon. Reconfigurable architectures for general-purpose computing. Ph.D. dissertation,

Massachusetts Institute of Technology, 1996.

[28] A. DeHon. Balancing interconnect and computation in a reconfigurable computing array

(or, why you don’t really want 100% lut utilization). In FPGA ’99: Proceedings of the

www.manaraa.com

152

1999 ACM/SIGDA seventh international symposium on Field programmable gate arrays,

pages 69–78, New York, NY, USA, 1999. ACM.

[29] C. Ebeling, L. McMurchie, S. Hauck, and S. Burns. Placement and routing tools for

the triptych fpga. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,

3(4):473–482, 1995.

[30] A. Farrahi and M. Sarrafzadeh. Complexity of the lookup-table minimization problem for

fpga technology mapping. IEEE Transactions On Computer-Aided Design Of Integrated

Circuits And Systems, 13(11):1319–1332, 1994.

[31] A. Farrahi and M. Sarrafzadeh. Fpga technology mapping forpower minimization. In

Proceedings of International Workshop in Field Programmable Logic and Applications,

1994.

[32] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton Univ. Press, Princeton,

NJ, 1962.

[33] R. Francis. Technology Mapping for Lookup-Table Based Field-Programmable Gate Arrays.

PhD dissertation, University of Toronto, 1993.

[34] R. Francis, J. Rose, and Z. Vranesic. Chortle-crf: fast technology mapping for lookup

table-based FPGAs. In 28th ACM/IEEE Design Automation Conference, pages 227–233,

1991.

[35] R. Francis, J. Rose, and Z. Vranesic. Technology mapping of lookup table-based FPGAs

for performance. In Digest of Technical Papers for IEEE International Conference on

Computer-Aided Design, pages 568–571, 1991.

[36] M. Frederick and A. Somani. Non-arithmetic carry chains for reconfigurable fabrics. In

Proceedings of the 15th International Conference on Computer Design, pages 137–143,

October 2007.

www.manaraa.com

153

[37] M. T. Frederick and A. K. Somani. Multi-bit carry chains for high-performance recon-

figurable fabrics. In Proceedings of 16th International Conference on Field Programmable

Logic and Applications, pages 275–280, August 2006.

[38] M. T. Frederick and A. K. Somani. Beyond the arithmetic constraint: depth-optimal map-

ping of logic chains in reconfigurable fabrics. In Proceedings of the Sixteenth ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, pages 37–46, February

2008.

[39] M. T. Frederick and A. K. Somani. Hierarchical agglomerative clustering for island-style

fpgas. In Proceedings of 18th International Conference on Field Programmable Logic and

Applications, submmitted 2008.

[40] R. Gupta, V. Sekhri, and A. Somani. CompuP2P: An Architecture for Internet Computing

Using Peer-to-Peer Networks. IEEE Transactions on Parallel and Distributed Systems,

17(11):1306–1320, 2006.

[41] S. Hauck, M. M. Hosler, and T. W. Fry. High performance carry chains for fpgas. IEEE

Transactions on VLSI Systems, 8(2), April 2000.

[42] M. Huang, F. Romeo, and A. Sangiovanni-Vincentelli. An efficient general cooling schedule

for simulated annealing. IEEE International Conference on Computer Aided Design, pages

381–384, 1986.

[43] M. Hutton, J. Schleicher, D. Lewis, B. Pedersen, R. Yuan, S. Kaptanoglu, G. Baeckler,

B. Ratchev, K. Padalia, M. Bourgeault, A. Lee, H. Kim, and R. Saini. Improving FPGA

Performance and Area Using an Adaptive Logic Module. Proc. Int’l Conference on Field

Programmable logic and its applications Proc. FPL-04, pages 135–144, 2004.

[44] A. Jain, M. Murty, and P. Flynn. Data clustering: a review. ACM Computing Surveys,

31(3):264–323, 1999.

[45] G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning. VLSI Design,

11(3):285–300, 2000.

www.manaraa.com

154

[46] K. Keutzer. Dagon: technology binding and local optimization by dag matching. In

DAC ’87: Proceedings of the 24th ACM/IEEE conference on Design automation, pages

341–347, New York, NY, USA, 1987. ACM Press.

[47] M. Kobata, M. Iida, and T. Sueyoshi. Clustering technique to reduce chip area and delay

for fpga. Electronics and Communications in Japan (Part II: Electronics), 90(6):34–46,

2007.

[48] I. Kuon and J. Rose. Measuring the gap between FPGAs and ASICs. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 26:203–215, February 2007.

[49] I. Kuon and J. Rose. Area and delay trade-offs in the circuit and architecture design

of fpgas. In Proceedings of the 16th international ACM/SIGDA symposium on Field

programmable gate arrays, pages 149–158, 2008.

[50] Y.-T. Lai and P.-T. Wang. Hierarchical interconnection structures for field programmable

gate arrays. IEEE Trans. Very Large Scale Integr. Syst., 5(2):186–196, 1997.

[51] J. Lam and J. Delosme. Performance of a new annealing schedule. Design Automation

Conference, 1988. Proceedings., 25th ACM/IEEE, pages 306–311, 1988.

[52] E. L. Lawler, K. N. Levitt, and J. Turner. Module clustering to minimize delay in digital

networks. IEEE Trans. Comput., 18(1):47–57, 1969.

[53] K. Leijten-Nowak and J. L. van Meerbergen. An fpga architecture with enhanced datapath

functionality. In Proceedings of the 11th Int’l Symposium on FPGAs, pages 195–204, 2003.

[54] A. Ling, D. P. Singh, and S. D. Brown. Fpga technology mapping: a study of optimality.

In Proceedings of the 42nd annual conference on Design automation, pages 427–432, New

York, NY, USA, 2005. ACM Press.

[55] S. Malhotra, T. Borer, D. Singh, and S. Brown. The quartus university interface program:

enabling advanced fpga research. In Proceedings of the 2004 IEEE Int’l Conference on

Field-Programmable Technology, pages 225–230, Dec. 2004.

www.manaraa.com

155

[56] V. Manohararajah, S. Brown, and Z. Vranesic. Heuristics for area minimization in LUT-

based FPGA technology mapping. In Proceedings of the International Workshop on Logic

and Synthesis, pages 14–21, 2004.

[57] A. Marquardt, V. Betz, and J. Rose. Speed and area tradeoffs in cluster-based fpga

architectures. IEEE Trans. Very Large Scale Integr. Syst., 8(1):84–93, 2000.

[58] Z. Marrakchi, H. Mrabet, and H. Mehrez. Hierarchical fpga clustering based on multilevel

partitioning approach to improve routability and reduce power dissipation. In Proceedings

of International Conference on Reconfigurable Computing and FPGAs, 2005.

[59] A. Mishchenko. An Integrated Technology Mapping Environment.

http://www.eecs.berkeley.edu/ alanmi/abc/.

[60] A. Mishchenko, S. Chatterjee, R. Brayton, and P. Pan. Integrating logic synthesis, tech-

nology mapping, and retiming. In Proceedings of the International Workshop on Logic

and Synthesis, pages 177–181, 2005.

[61] R. Murgai, N. Shenoy, R. Brayton, and A. Sangiovanni-Vincentelli. Performance directed

synthesis for table look up programmable gate arrays. In Digest of Technical Papers from

the IEEE International Conference on Computer-Aided Design, pages 572–575, 1991.

[62] OpenCores. www.opencores.org.

[63] J. Rose, R. J. Francis, D. Lewis, and P. Chow. Architecture of field-programmable gate

arrays: the effect of logic block functionality on area efficiency. IEEE Journal of Solid-

State Circuits, 25:1217–1225, October 1990.

[64] J. Rose and D. Hill. Architectural and physical design challenges for one-million gate fpgas

and beyond. In FPGA ’97: Proceedings of the 1997 ACM fifth international symposium

on Field-programmable gate arrays, pages 129–132, New York, NY, USA, 1997. ACM.

www.manaraa.com

156

[65] S. Safarpour, A. Veneris, G. Baeckler, and R. Yuan. Efficient sat-based boolean matching

for fpga technology mapping. In DAC ’06: Proceedings of the 43rd annual conference on

Design automation, pages 466–471, New York, NY, USA, 2006. ACM.

[66] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj,

P. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Sis: A system for sequential

circuit synthesis. Technical Report UCB/ERL M92/41, EECS Department, University of

California, Berkeley, 1992.

[67] A. Singh, G. Parthasarathy, and M. Marek-Sadowska. Efficient circuit clustering for area

and power reduction in fpgas. ACM Trans. Des. Autom. Electron. Syst., 7(4):643–663,

2002.

[68] S. Singh, J. Rose, P. Chow, and D. Lewis. The effect of logic block architecture on fpga

performance. Journal of Solid-State Circuits, 27:281–287, March 1992.

[69] W. Swartz and C. Sechen. New algorithms for the placement and routing of macro

cells. Computer-Aided Design, 1990. ICCAD-90. Digest of Technical Papers., 1990 IEEE

International Conference on, pages 336–339, 1990.

[70] M. Teslenko and E. Dubrova. Hermes: LUT FPGA technology mapping algorithm for

area minimization with optimum depth. In Proceedings of the IEEE/ACM International

Conference on Computer Aided Design, pages 748–751, 2004.

[71] M. Tom and G. Lemieux. Logic block clustering of large designs for channel-width con-

strained fpgas. In Proceedings of 42nd conference on design automation, pages 726–731,

2005.

[72] N. Viswanathan and C. Chu. Fastplace: efficient analytical placement using cell shifting,

iterative local refinement,and a hybrid net model. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 24(5):722– 733, May 2005.

www.manaraa.com

157

[73] M. Wu, Y.-L.; Marek-Sadowska. Graph based analysis of fpga routing. In Design Automa-

tion Conference, 1993, with EURO-VHDL ’93. Proceedings EURO-DAC ’93. European,

pages 104–109, September 1993.

[74] Xilinx. Virtex Series User Guides. www.xilinx.com.

[75] Xilinx. XC4000E and XC4000X Series Field Programmable Gate Arrays Product Specifi-

cation. http://www.xilinx.com.

[76] S. Yang. Logic synthesis and optimization benchmarks, version 3.0. Tech. Report, Micro-

electronics Centre of North carolina, 1991.

[77] P. S. Zuchowski, C. B. Reynolds, R. J. Grupp, S. G. Davis, B. Cremen, and B. Troxel.

Hybrid asic and fpga architecture. In Proceedings of the International Conference on

Computer-Aided Design, pages 187–194, 2002.

	2008
	Beyond the arithmetic constraint: depth-optimal mapping of logic chains in reconfigurable fabrics
	Michael Todd Frederick
	Recommended Citation

	tmp.1430270715.pdf.ggL_m

